Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 23 nov 2017, 06:25

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 5 mensagens ] 
Autor Mensagem
 Título da Pergunta: Encontrar uma Base ortogonal em R3
MensagemEnviado: 27 Oct 2017, 15:37 
Offline

Registado: 27 Oct 2017, 15:30
Mensagens: 3
Localização: Contagem
Agradeceu: 2 vezes
Foi agradecido: 0 vez(es)
(a) Encontre uma base ortonormal {u, v, w} de R3 que possui todas as seguintes propriedades (simultaneamente!):
i. u pertence ao eixo z,
ii. o ˆangulo entre v e (0, 1, 0) ´e π/4,
iii. Escrevendo w = (w1, w2, w3), w1 ´e positivo.

(b) Quantas bases ortonormais de R3 existem que satisfazem todas as propriedades de Parte (a)?


Topo
 Perfil  
 
MensagemEnviado: 29 Oct 2017, 20:41 
Offline

Registado: 19 Oct 2015, 13:34
Mensagens: 744
Localização: Rio de Janeiro
Agradeceu: 7 vezes
Foi agradecido: 211 vezes
se,

é uma base ortonormal,
então,


a)
i)


ii)

então, podemos dizer que,


iii)


b)
existe apenas UMA possibilidade de base ortonormal em R3 que atenda às três propriedades:

_________________
Vivemos em um mundo onde toda informação é falsa até que se prove o contrário.
A Verdade está a caminho.


Topo
 Perfil  
 
MensagemEnviado: 30 Oct 2017, 16:59 
Offline

Registado: 14 dez 2011, 15:59
Mensagens: 777
Localização: Portugal
Agradeceu: 15 vezes
Foi agradecido: 317 vezes
jorgeluis Escreveu:
...
ii)

então, podemos dizer que,

...

Atenção que a fórmula é (não envolve tangentes). Isso vai estragar todos os cálculos daí para a frente. O raciocínio, no entanto está correto. Note que se é ortogonal a então é da forma e que juntando ao facto de ter norma 1 e fazer ângulo de com (0,1,0) dá-nos que e . Continuando o raciocínio (exercício) obtemos as seguintes soluções:



Topo
 Perfil  
 
MensagemEnviado: 03 nov 2017, 04:15 
Offline

Registado: 27 Oct 2017, 15:30
Mensagens: 3
Localização: Contagem
Agradeceu: 2 vezes
Foi agradecido: 0 vez(es)
Rui Carpentier Escreveu:
jorgeluis Escreveu:
...
ii)

então, podemos dizer que,

...

Atenção que a fórmula é (não envolve tangentes). Isso vai estragar todos os cálculos daí para a frente. O raciocínio, no entanto está correto. Note que se é ortogonal a então é da forma e que juntando ao facto de ter norma 1 e fazer ângulo de com (0,1,0) dá-nos que e . Continuando o raciocínio (exercício) obtemos as seguintes soluções:



Rui, não entendi muito bem seu raciocínio. A resposta anterior está errada então né?


Topo
 Perfil  
 
MensagemEnviado: 04 nov 2017, 00:29 
Offline

Registado: 14 dez 2011, 15:59
Mensagens: 777
Localização: Portugal
Agradeceu: 15 vezes
Foi agradecido: 317 vezes
Citar:
Rui, não entendi muito bem seu raciocínio. A resposta anterior está errada então né?


Infelizmente sim, a resolução do Jorge Luis está errada. Repare que, para a condição ii, nunca poderíamos ter v=(0,1,0), porque o ângulo entre v e (0,1,0) seria, nesse caso, 0 (são o mesmo vetor).


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 5 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 2 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: