Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 06 mai 2021, 11:50

Os Horários são TMG [ DST ]


A pesquisa obteve 897 resultados
Procurar estes resultados:

Autor Mensagem

 Fórum: Geometria e Trigonometria   Pergunta: Trigonometric equation - resolver sec(x)+csc(x)=c

 Título da Pergunta: Re: Trigonometric equation
Enviado: 24 jan 2012, 16:55 

Respostas: 2
Exibições: 898


Just a sketch of a proof: Let f(x)=\sec(x)+\csc(x) Find f' and show that: f'(x)>0 for x\in (\frac{\pi}{4},\frac{\pi}{2})\cup (\frac{\pi}{2},\pi)\cup (\pi,\frac{5\pi}{4}) ; f'(x)<0 for x\in (0,\frac{\pi}{4})\cup (...

 Fórum: Equações diferenciais   Pergunta: Otimização com restrições de igualdade

Enviado: 09 jan 2012, 14:02 

Respostas: 2
Exibições: 1354


Penso que se está-se a considerar z como uma função de \mathbb{R}^2 em \mathbb{R} . Nesse caso é só questão de observar que um ponto (x,y) é ponto de estacionaridade (i.e. \nabla z(x,y)=(0,0) ) somente se f(x)=0 e que não é ponto de sela apenas no caso em que f'&#...

 Fórum: Primitivas e Integrais   Pergunta: Primitivação de t/(t^6-t^2)*6t^5

 Título da Pergunta: Re: Primitivação por substituição
Enviado: 08 jan 2012, 13:14 

Respostas: 3
Exibições: 1063


Trata-se de uma típica primitivação de funções racionais. Primeiro faça a divisão do numerador pelo denominador para obter a decomposição \frac{t^6}{t^4-1}=t^2+\frac{t^2}{t^4-1} e depois parta a última fração em frações simples: \frac{t^2}{t^4-1}=\frac{t^2}{(t-1)(t+1)(t^2+1)}...

 Fórum: Geometria e Trigonometria   Pergunta: Geometria

 Título da Pergunta: Re: Geometria
Enviado: 07 jan 2012, 14:06 

Respostas: 3
Exibições: 1397


Isso parece mais um exercício de olimpíadas. Observe o seguinte, como \overline{AB}=\overline{BD} e os triângulos ABC e BCD têm a mesma altura estes vão ter a mesma área. Do mesmo modo, como \overline{BC}=\overline{CE} e os triângulos BCD e CDE têm a mesma altura estes vão ter a mesma área. Repetind...

 Fórum: Análise de Funções   Pergunta: provar que é uniformemente contínua | f(x)=x+sen(x)

 Título da Pergunta: Re: Função uniformemente contínua
Enviado: 04 jan 2012, 21:38 

Respostas: 4
Exibições: 2157


Quanto ao que é preciso responder para ter a cotação toda não lhe posso dizer nada. Posso no entanto desenvolver mais a resposta. Esta resumia-se à sequência de implicações: Derivada limitada \Rightarrow função de Lipschitz \Rightarrow função uniformemente contínua. Recordando os conceitos: (1) f...

 Fórum: Análise de Funções   Pergunta: provar que é uniformemente contínua | f(x)=x+sen(x)

 Título da Pergunta: Re: Função uniformemente contínua
Enviado: 04 jan 2012, 14:23 

Respostas: 4
Exibições: 2157


Olá,
A função dada tem derivada limitada em R, logo (usando o teorema de Lagrange) é uma função de Lipschitz e como tal é uniformemente contínua em R.
Bom ano novo,
Rui Carpentier

 Fórum: Primitivas e Integrais   Pergunta: P(cos(x)ln(1+cos(x)))

 Título da Pergunta: Re: P(cos(x)ln(1+cos(x)))
Enviado: 14 dez 2011, 16:49 

Respostas: 3
Exibições: 1066


Caro amigo, faça assim, ao primitivar por partes escolha \cos x para primitivar e \ln(1+\cos x) para derivar. Irá aparecer na segunda parcela a expressão \frac{\sin^2 x}{1+\cos x} para primitivar. Ora esta não é mais que 1-\cos x uma vez que \sin^2 x=1-\cos^2x=(1+\cos x)(1-\cos x...
Ordenar por:  
Página 90 de 90 [ A pesquisa obteve 897 resultados ]


Os Horários são TMG [ DST ]


Ir para:  
cron