João P. Ferreira Escreveu:Caro Dainiel,
estive a confirmar as contas por alto e parece-me estar tudo correto.
Muito obrigado pelas suas magnas contribuições

Um bem-haja
Prezado
João P.,
revi os cálculos e percebi que cometi um equívoco em
danjr5 Escreveu:\(F(- \sqrt[]{y}) - F(- y) = \frac{- 2y + 1}{2y + 2}\)
O correto seria:
\(F(- \sqrt[]{y}) = \frac{(2y + 1)}{2}.\frac{- 1}{y + y} ====> \frac{- (2y + 1)}{4y}\)
\(F(- y) = \frac{(2y + 1)}{2}.\frac{- 1}{y^2 + y} ====> \frac{- (2y + 1)}{2y(y + 1)}\)
\(F(- \sqrt[]{y}) - F(- y) = \frac{- (2y + 1)}{4y} + \frac{(2y + 1)}{2y(y + 1)} => F(- \sqrt[]{y}) - F(- y) = \frac{- (2y + 1)(y + 1) + (2y + 1)2}{4y(y + 1)} => F(- \sqrt[]{y}) - F(- y) = \frac{- 2y^2 + y + 1}{4y(y + 1)}\)
Então,
\(\int_{1}^{2}\frac{- 2y^2 + y + 1}{4y(y + 1)}dy =\)
\(\int_{1}^{2}\frac{- 2y^2}{4y(y + 1)}dy + \int_{1}^{2}\frac{y}{4y(y + 1)}dy + \int_{1}^{2}\frac{1}{4y(y + 1)}dy =\)
\(- \frac{1}{2}\int_{1}^{2}\frac{y}{(y + 1)}dy + \frac{1}{4}\int_{1}^{2}\frac{1}{(y + 1)}dy + \frac{1}{4}\int_{1}^{2}\frac{1}{y(y + 1)}dy =\)
Integral I:\(- \frac{1}{2}\int_{1}^{2}\frac{y}{y + 1}dy\)
Consideremos, \(y + 1 = \sigma => d\sigma = dy\)
\(- \frac{1}{2}\int_{1}^{2}\frac{y}{y + 1}dy = - \frac{1}{2}\int_{1}^{2}\frac{\sigma - 1}{\sigma}dy = - \frac{1}{2}\int_{1}^{2}\left(\frac{\sigma}{\sigma} - \frac{1}{\sigma} \right)dy = - \frac{1}{2}\int_{1}^{2}\left(1 -\frac{1}{\sigma} \right)dy = - \frac{1}{2}\left[ \sigma - ln\sigma\right]_{1}^{2} = - \frac{1}{2}\left[y + 1 - ln|y + 1|\right]_{1}^{2}\)
\(F(2) - F(1) = - \frac{1}{2}.(1 + ln2 - ln3)\)
Integral II:\(\frac{1}{4}\int_{1}^{2}\frac{1}{y + 1}dy = \frac{1}{4}[ln|y + 1|]_{1}^{2}\)
\(G(2) - G(1) = \frac{1}{4}(ln3 - ln2)\)
Integral III:\(\frac{1}{4}\int_{1}^{2}\frac{1}{y(y + 1)}dy = \frac{1}{4}[ln(y^2 + y)]_{1}^{2}\)
\(H(2) - H(1) = \frac{1}{4}(ln6 - ln2)\)
Resta-nos calcular:
\([F(2) - F(1)] + [G(2) - G(1)] + [H(2) - H(1)] =\)
\(-\frac{1}{2}(1 + ln2 - ln3) + \frac{1}{4}(ln3 - ln2) + \frac{1}{4}(ln6 - ln2) =\)
\(-\frac{1}{2}(1 + ln2 - ln3) + \frac{1}{4}(ln3 - ln2) + \frac{1}{4}(ln2 + ln3 - ln2) =\)
\(\frac{- 2 - 2.ln2 + 2.ln3 + ln3 - ln2 + ln3}{4} =\)
\(\frac{4.ln3 - 3.ln2 - 2}{4}\)