Séries alternadas, de Dirichlet, de Mengoli, convergência de uma série, série geométrica e linear, limite de sucessões/sequências, convergência e monotonia assim como máximos e mínimos, supremos ou ínfimos, majorantes e minorantes
01 jan 2012, 10:50
\(\displaystyle{\sum_{k=0}^{n}\frac{1}{2^k+3^k}=}\)
02 jan 2012, 01:15
What shall I suppose to find? The general expression?
We can clearly see that it converges
\(\frac{1}{3^k+3^k}<\frac{1}{2^k+3^k}<\frac{1}{2^k+2^k}\)
\(\sum_{k=0}^{\infty}\frac{1}{3^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+2^k}\)
\(\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{2^k}\)
\(\frac{1}{2}\frac{1}{1-1/3}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\frac{1}{1-1/2}\)
\(\frac{3}{4}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<1\)
So it converges
But I'm not really seeing how shall I calculate the general expression... but if you find out kindly let me know..
regards
PS: And next time dear kinu just try to use the word 'please'
04 jan 2012, 12:33
Hi
Thanks to a very kind user named JJacquelin the solution was found
The q-polygamma functions (do not confuse with the usual polygamma functions) were used
See the image
Best regards
- Anexos
-

- q-digamma.JPG (43.67 KiB) Visualizado 4688 vezes
18 jan 2012, 13:55
Thanks Admin for Nice solution
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.