Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

sum 1/(2^k+3^k)
https://forumdematematica.org/viewtopic.php?f=11&t=112
Página 1 de 1

Autor:  kinu [ 01 jan 2012, 10:50 ]
Título da Pergunta:  sum 1/(2^k+3^k)

\(\displaystyle{\sum_{k=0}^{n}\frac{1}{2^k+3^k}=}\)

Autor:  João P. Ferreira [ 02 jan 2012, 01:15 ]
Título da Pergunta:  Re: sum

What shall I suppose to find? The general expression?

We can clearly see that it converges

\(\frac{1}{3^k+3^k}<\frac{1}{2^k+3^k}<\frac{1}{2^k+2^k}\)

\(\sum_{k=0}^{\infty}\frac{1}{3^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+2^k}\)

\(\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{2^k}\)

\(\frac{1}{2}\frac{1}{1-1/3}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\frac{1}{1-1/2}\)

\(\frac{3}{4}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<1\)

So it converges

But I'm not really seeing how shall I calculate the general expression... but if you find out kindly let me know..

regards

PS: And next time dear kinu just try to use the word 'please'

Autor:  João P. Ferreira [ 04 jan 2012, 12:33 ]
Título da Pergunta:  Re: sum

Hi

Thanks to a very kind user named JJacquelin the solution was found

The q-polygamma functions (do not confuse with the usual polygamma functions) were used

See the image

Best regards

Anexos:
q-digamma.JPG
q-digamma.JPG [ 43.67 KiB | Visualizado 4686 vezes ]

Autor:  kinu [ 18 jan 2012, 13:55 ]
Título da Pergunta:  Re: sum

Thanks Admin for Nice solution

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/