Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 22 dez 2024, 02:40

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 
Autor Mensagem
 Título da Pergunta: Provar que 6 divide n*(2n-1)*(n-1)
MensagemEnviado: 21 jul 2011, 18:43 
Offline

Registado: 21 jul 2011, 18:17
Mensagens: 1
Agradeceu: 0 vez(es)
Foi agradecido: 0 vez(es)
Boa tarde,

Tenho uma dúvida num exercício que não consigo resolver, se alguém me puder ajudar agradecia.

O exercício é o seguinte:

Provar que 6 divide n*(2n-1)*(n-1)

Penso que se pode resolver por indução mas não consigo resolver uma vez que não consigo encontrar o final da sucessão para 0+1+5+14+30+55+...+ ?????? = [n*(2n-1)*(n-1)]/6

O único exercício parecido que encontrei foi que 6 divide n*(2n+1)*(n+1) onde:

1^2+2^2+...+n^2=[n*(2n+1)*(n+1)]/6

Obrigado.


Editado pela última vez por m0x0 em 21 jul 2012, 22:11, num total de 1 vez.

Topo
 Perfil  
 
 Título da Pergunta: Re: Dúvida de Exercício
MensagemEnviado: 22 jul 2011, 11:33 
Offline

Registado: 21 jan 2011, 11:31
Mensagens: 947
Localização: Portugal
Agradeceu: 11 vezes
Foi agradecido: 126 vezes
Bom dia.
É fácil ver que para n= 1 funciona (a função dá zero, que é divisível por seis)

Provemos que se funciona para n, também resulta para n+1.

Para n, temos que a expressão pode ser escrita como n(2n^2-3n+1).
Para n+1,
(n+1)(2(n+1)-1)n = (n+1)(2n+1)n = ... = n(2n^2+3n+1)

Então, para n temos que n(2n^2-3n+1) é divisível por 6.
Para n+1, temos que
n(2n^2+3n+1) = n(2n^2-3n+6n+1) = n(2n^2-3n+1)+6n^2

Como o primeiro termo é divisível por seis e o segundo também (6 vezes um número inteiro), então também para n+1 temos uma expressão divisível por seis

Por indução prova-se então que 6 divide n*(2n-1)*(n-1)

_________________
José Sousa
se gostou da resposta, divulgue o fórumdematemática.org

O Binômio de Newton é tão belo como a Vênus de Milo.
O que há é pouca gente para dar por isso.

óóóó---óóóóóó óóó---óóóóóóó óóóóóóóó
(O vento lá fora.)

Álvaro de Campos, 15-1-1928


Topo
 Perfil  
 
 Título da Pergunta: Re: Dúvida de Exercício
MensagemEnviado: 22 jul 2011, 11:42 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2235
Localização: Lisboa
Agradeceu: 683 vezes
Foi agradecido: 346 vezes
Muitos parabéns pela resolução meu caro

Bem visto essa da indução matemática

- Provar para n=1.
- Se funciona para n, também funciona para n+1

ovo de colombo, parabéns pela resolução meu caro, sucinta e clara

Caro Artur Benitez, volte sempre

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 2 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para:  
cron