Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Provar por absurdo que.. (serie)
https://forumdematematica.org/viewtopic.php?f=11&t=6708
Página 1 de 1

Autor:  arilson [ 14 ago 2014, 21:26 ]
Título da Pergunta:  Provar por absurdo que.. (serie)

preciso provar por absurdo que se lim de n--> ∞, de uma seq. An = 0. então o somatorio de n = 1 -> ∞ de An, ou seja a serie de An converge. quero provar que essa afirmação é falsa por absurdo.

Autor:  Walter R [ 14 ago 2014, 23:32 ]
Título da Pergunta:  Re: Provar por absurdo que.. (serie)

Olá, Arilson. Eu acho que provar por absurdo, neste caso, esbarra na seguinte dificuldade: a afirmação às vezes é verdadeira. Considere que \(\lim_{n\rightarrow \infty}\left ( \frac{1}{2} \right )^n=0\) e que \(\sum_{n=1}^{\infty}\left ( \frac{1}{2} \right )^n\) converge. Então, se a afirmação às vezes é verdadeira, como provar que é falsa por absurdo? Deverias supor que é verdadeira e recair em uma contradição lógica. Mas se a afirmação às vezes é verdadeira, não é contraditória, logo não incorrerás em absurdo. Melhor é apresentar um contra-exemplo que invalide a afirmação.
Abraço!

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/