Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
Calcular série ∑ ( n⁴- 2n³+n² - 4n + 10)/(5n⁴+ n³ - 1) https://forumdematematica.org/viewtopic.php?f=11&t=841 |
Página 1 de 1 |
Autor: | pastorpj [ 27 set 2012, 02:17 ] |
Título da Pergunta: | Calcular série ∑ ( n⁴- 2n³+n² - 4n + 10)/(5n⁴+ n³ - 1) |
Qual a série dada por \(\sum \frac{n^4- 2n^3+n^2 - 4n + 10}{5n^4+ n^3 - 1}\) |
Autor: | João P. Ferreira [ 27 set 2012, 12:33 ] |
Título da Pergunta: | Re: Calcular série ∑ ( n⁴- 2n³+n² - 4n + 10)/(5n⁴+ n³ - 1) |
Boas repare que \(\lim a_n\neq 0\) logo a série é divergente, i.e. \(\sum a_n = \infty\) \(\lim a_n = \lim \frac{n^4- 2n^3+n^2 - 4n + 10}{5n^4+ n^3 - 1}= \lim \frac{n^4}{5n^4}=\frac{1}{5}\neq 0\) Saudações |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |