Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Matriz com equação segunda fase
https://forumdematematica.org/viewtopic.php?f=12&t=12478
Página 1 de 1

Autor:  Sarah [ 24 mar 2017, 00:18 ]
Título da Pergunta:  Matriz com equação segunda fase

Considere a matriz:
\(A(X)=\begin{pmatrix} cos x & sen x \\ sen x & cos x \end{pmatrix}\)

Determine o número x ∊ [0;2∏] tal que A² = A

Observação: ∏ é o pi, certo?

Autor:  jorgeluis [ 25 mar 2017, 16:15 ]
Título da Pergunta:  Re: Matriz com equação segunda fase  [resolvida]

Sarah,

\(A\begin{bmatrix} cos x & sen x\\ sen x & cos x \end{bmatrix} \times A\begin{bmatrix} cos x & sen x\\ sen x & cos x \end{bmatrix} = A\begin{bmatrix} cos x & sen x\\ sen x & cos x \end{bmatrix}\)
se, e somente se,
det(A)={0,1}
logo,

\(\begin{vmatrix} cos x & sen x\\ sen x & cos x \end{vmatrix}=0\)

\(\left.\begin{matrix} cos^{2}x & -sen^{2}x & =0\\ cos^{2}x & +sen^{2}x & =1 \end{matrix}\right\}\)

\(2cos^{2}x=1
cos^{2}x=\frac{1}{2}\)

inserindo a raiz em ambos os lados, temos:
\(cos x=\frac{\sqrt{2}}{2}\)
ou seja,
\(x=\left \{ 45^{0}, 315^{0} \right \}\)
ou
\(x=\left \{\frac{\pi}{4}, \frac{7\pi}{4}\right \}\)

fazendo o mesmo com:
\(\begin{vmatrix} cos x & sen x\\ sen x & cos x \end{vmatrix}=1\)

encontraremos:
\(x=\left \{ 0^{0}, 360^{0} \right \}\)
ou
\(x=\left \{0, 2\pi \right \}\)

Solução final:

\(S=\left \{ 0, \frac{\pi}{4}, \frac{7\pi}{4}, 2\pi\right \}\)

Autor:  acacio [ 26 mar 2017, 04:01 ]
Título da Pergunta:  Re: Matriz com equação segunda fase

Trabalhando com a equação \(A^2=A\), temos então:
\(\begin{bmatrix} cosx&senx\\ senx&cosx \end{bmatrix}\begin{bmatrix} cosx&senx\\ senx&cosx \end{bmatrix}=\begin{bmatrix} cosx&senx\\ senx&cosx \end{bmatrix}\), fazendo multiplicação de matrizes temos,
\(cos^2x+sen^2x=cosx\) multiplicando a 1ª linha pela 1ª coluna e
\(2cosxsenx=senx\) multiplicando a 1ª linha pela 2ª coluna, então
\(cosx=1\) e \(2senx=senx\) e portanto
\(cosx=1\) e \(senx=0\) logo \(x\in\left \{0, 2\pi \right \}\).

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/