Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 24 abr 2024, 19:45

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 
Autor Mensagem
MensagemEnviado: 02 nov 2015, 15:35 
Offline

Registado: 02 nov 2015, 14:32
Mensagens: 2
Localização: Brasil
Agradeceu: 1 vez(es)
Foi agradecido: 0 vez(es)
Boa tarde, pessoal. Sou novo aqui... Não consigo resolver a questão abaixo. Será que alguém pode ajudar?

1. Seja T:R² --> R² definida por T(x,y)=(2y,3x-y). Ache a representação matricial de T nas bases abaixo:

a) E={(1,0),(0,1)}
resposta:
|0 2|
|3 -1|

b) F={(1,3),(2,5)}
resposta:
|-30 -48|
|18 29|

Consegui chegar ao resultado na primeira base (a), mas não na segunda.

Obrigado!!!


Topo
 Perfil  
 
MensagemEnviado: 03 nov 2015, 04:28 
Offline

Registado: 08 jan 2015, 18:39
Mensagens: 930
Localização: Campo Grande - MS - Brasil
Agradeceu: 14 vezes
Foi agradecido: 475 vezes
Boa noite!

Vamos resolver as duas da mesma forma, assim você sempre acerta (independentemente da base escolhida, ok?).

\(T(x,y)=(2y,3x-y)\)

a) E = { (1,0), (0,1) }
T(1,0) = (2.0, 3.1-0) = (0, 3) = 0(1,0)+3(0,1)
T(0,1) = (2.1, 3.0-1) = (2,-1) = 2(1,0)+(-1)(0,1)

Perceba que os números em vermelho (0,3) tornam-se o vetor da primeira coluna da matriz abaixo.
Os números em azul (2, -1) tornam-se o vetor da segunda coluna da matriz abaixo.

\(T\begin{bmatrix}
x\\
y
\end{bmatrix}=\begin{bmatrix}
0 & 2\\
3 & -1
\end{bmatrix}\begin{bmatrix}
x\\
y
\end{bmatrix}\)

b) E = { (1,3), (2,5) }
T(1,3) = (2.3, 3.1-3) = (6, 0) = a(1,3)+b(2,5)
T(2,5) = (2.5, 3.2-5) = (10,1) = c(1,3)+d(2,5)

Agora temos que encontrar os valores a, b, c, d.

\(\begin{cases}
a+2b=6\\
3a+5b=0
\end{cases}\)

Resolvendo sai a=-30 e b=18

\(\begin{cases}
c+2d=10\\
3c+5d=1
\end{cases}\)

Resolvendo sai c=-48 e d=29

Agora é só repetir: primeira coluna, vermelhos (-30, 18).
Segunda coluna, azuis (-48, 29)

\(T\begin{bmatrix}
x\\
y
\end{bmatrix}=\begin{bmatrix}
-30 & -48\\
18 & 29
\end{bmatrix}\begin{bmatrix}
x\\
y
\end{bmatrix}\)

Obs.:

Uma outra forma de se resolver seria utilizando mudança de base.
Base E = { (1,0), (0,1) }
Base F = { (1,3), (2,5) }

A matriz de mudança de base \(M_{EF}=\begin{bmatrix}1&2\\3&5\end{bmatrix}\), e a matriz de transformação inversa (basta calcular a inversa desta última) é \(M_{FE}=\begin{bmatrix}-5&2\\3&-1\end{bmatrix}\)

Como temos de inserir os dados na nova base (F), transformar para a base (E) e depois calcular a resposta de volta para a (F), podemos fazer o seguinte produto com a matriz encontrada no item (a).

\(M_{FE}\begin{bmatrix}
0 & 2\\
3 & -1
\end{bmatrix}M_{EF}=\begin{bmatrix}-5&2\\3&-1\end{bmatrix}\begin{bmatrix}
0 & 2\\
3 & -1
\end{bmatrix}\begin{bmatrix}1&2\\3&5\end{bmatrix}=\begin{bmatrix}-30&-48\\18&29\end{bmatrix}\)


Espero ter ajudado!

_________________
Baltuilhe
"Nós somos o que fazemos repetidamente. Excelência, então, não é um modo de agir, é um hábito." Aristóteles


Topo
 Perfil  
 
MensagemEnviado: 04 nov 2015, 15:53 
Offline

Registado: 02 nov 2015, 14:32
Mensagens: 2
Localização: Brasil
Agradeceu: 1 vez(es)
Foi agradecido: 0 vez(es)
Com certeza ajudou, Baltuilhe!

Com a base canônica eu chegava ao resultado "mais rápido" e não havia necessidade de prosseguir com mais passos, por isso não sabia o que fazer com a outra base... Mas sua explicação foi muito clara, consegui resolver outros exercícios da mesma forma!

Muito obrigado! :)


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 18 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: