Coloque aqui todas as dúvidas que tiver sobre hiperbolóides, hipérboles, parabolóides, parábolas, planos, rectas e outras equações tridimensionais
12 nov 2012, 14:50
Qual alternativa expressa a equação da elipse 16x²+9y²-64x-54y+1=0 na forma reduzida?
a)\(\frac{(x-2)^2}{9}+\frac{(y+3)^2}{16}=1\)
b)\(\frac{(x-2)^2}{9}+\frac{(y-3)^2}{16}=1\)
c)\(\frac{(x+2)^2}{9}+\frac{(y+3)^2}{16}=1\)
d)\(\frac{(x-2)^2}{16}+\frac{(y-3)^2}{9}=1\)
e)\(\frac{(x+2)^2}{9}+\frac{(y-3)^2}{16}=1\)
Obrigado!
13 nov 2012, 22:52
LAZAROTTI Escreveu:Qual alternativa expressa a equação da elipse 16x²+9y²-64x-54y+1=0 na forma reduzida?
a)\(\frac{(x-2)^2}{9}+\frac{(y+3)^2}{16}=1\)
b)\(\frac{(x-2)^2}{9}+\frac{(y-3)^2}{16}=1\)
c)\(\frac{(x+2)^2}{9}+\frac{(y+3)^2}{16}=1\)
d)\(\frac{(x-2)^2}{16}+\frac{(y-3)^2}{9}=1\)
e)\(\frac{(x+2)^2}{9}+\frac{(y-3)^2}{16}=1\)
Obrigado!
\(\\ 16x^2 + 9y^2 - 64x - 54y + 1 = 0 \\\\ 16x^2 - 64x + 9y^2 - 54y + 1 = 0 \\\\ (16x^2 - 64x) + (9y^2 - 54y) + 1 = 0 \\\\ (4x - 8)^2 - 64 + (3y - 9)^2 - 81 + 1 = 0 \\\\ [4(x - 2)]^2 + [3(y - 3)]^2 = 144 \\\\ 16(x - 2)^2 + 9(y - 3)^2 = 144 \,\,\,\, \div (144 \\\\ \fbox{\frac{(x - 2)^2}{9} + \frac{(y - 3)^2}{16} = 1}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.