Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
Soma de ponto com vetor https://forumdematematica.org/viewtopic.php?f=14&t=14124 |
Página 1 de 1 |
Autor: | Borderline [ 09 mar 2019, 22:36 ] |
Título da Pergunta: | Soma de ponto com vetor |
Na figura, a distância de M a A é o dobro da distância de M a B, e a medida de AN é a terça parte da medida de CN. Exprima X em função de A, AB, AC Gabarito: X= A + (3/5) AB + (1/10)AC Anexo: Sem título.png [ 13.17 KiB | Visualizado 6347 vezes ] |
Autor: | Rui Carpentier [ 17 mar 2019, 16:52 ] |
Título da Pergunta: | Re: Soma de ponto com vetor |
Dicas para resolução: Como X é colinear tanto com N e B como com M e C, existem constantes \(\lambda , \mu \in \mathbb{R}\) tais que \(AX = \lambda AB + (1-\lambda ) AN\) e \(AX = \mu AM + (1-\mu ) AC\). E como \(AN = 1/4 AC\) e \(AM = 2/3 AB\) (exercício), temos que duas combinações lineares para AX em função de AB e AC: \(AX = \lambda AB + \frac{1-\lambda}{4} AC = \frac{2\mu}{3} AB +(1-\mu )AC\). Como os vetores AB e AC formam uma base para \(\mathbb{R}^2\) (assumindo que o triângulo ABC é não-degenerado), as combinações têm de coincidir, logo temos o sistema de equações lineares \(\lambda = \frac{2\mu}{3}\), \(\frac{1-\lambda}{4} = 1-\mu\). Agora só tem de resolver o sistema em relação a uma das variáveis (por exemplo \(\mu\)) para determinar a solução. Nota: \(AX = f(AB,AC) \Leftrightarrow A = X+f(AB,AC)\) |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |