Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
at least one real solution https://forumdematematica.org/viewtopic.php?f=15&t=211 |
Página 1 de 1 |
Autor: | kinu [ 23 fev 2012, 16:25 ] |
Título da Pergunta: | at least one real solution |
prove that if \(a_0,a_1,...,a_{2n}\in R\) and \(\sum_{k=0}^{2n}\frac{a_k}{2n-k+1}=0\) then equation \(a_0x^{2n}+a_1x^{2n-1}+...+a_{2n-1}x+a_0=0\) has at least one solution in \((-1,1)\) |
Autor: | Rui Carpentier [ 24 fev 2012, 17:32 ] |
Título da Pergunta: | Re: at least one real solution |
Consider the polynomial \(p(x)=a_0x^{2n}+a_1x^{2n-1}+\cdots +a_{2n-1}x+a_{2n}\). You want to show that \(p(x)=0\) has at least one solution in \((-1,1)\). Take the primitive of \(p\) given by the indefinite integral: \(P(x)=\int_0^x a_0t^{2n}+a_1t^{2n-1}+\cdots +a_{2n-1}t+a_{2n} dt\). It is easy to see that \(P(0)=0\) and \(P(1)=\sum_{k=0}^{2n}\frac{a_k}{2n-k+1}\) which is also zero by hypothesis. Therefore, by Rolle's theorem, there is at least one zero of the derivative of \(P\) (which is \(p\)) in the interval \((0,1)\). |
Autor: | kinu [ 12 mar 2012, 07:27 ] |
Título da Pergunta: | Re: at least one real solution |
thanks Ruicarpenter |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |