Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
Dominio e imagem https://forumdematematica.org/viewtopic.php?f=15&t=2647 |
Página 1 de 1 |
Autor: | fabiocohen [ 27 mai 2013, 23:24 ] |
Título da Pergunta: | Dominio e imagem |
Olá, estou tendo dificuldade para encontrar dominio e imagem de algumas funções. teria como alguém me dar uma explicação basica de como encontrar, eu sei o que são por definição, mas em algumas funções ñ consigo encontrar. EX: e ^ (- (x^(2)+y^(2)) ) arctan(x/y) arcsen(x-y) Obrigado |
Autor: | João P. Ferreira [ 03 jun 2013, 15:47 ] |
Título da Pergunta: | Re: Dominio e imagem |
As regras para achar o domínio são \(\frac{a}{u}\) então \(u\neq 0\) \(\sqrt{u}\) então \(u\geq 0\) \(\ln(u)\) então \(u>0\) \(\arcsin(u)\) ou \(\arccos(u)\) então \(-1<u<1\) fora isto por norma o domínio é sempre \(\R\) assim na primeira o domínio é \(\R^2\), na segunda é \(\R^2\setminus \left{y=0\right}\) na terceiro o domínio é \(-1<x-y<1\) |
Autor: | fabiocohen [ 04 jun 2013, 21:13 ] |
Título da Pergunta: | Re: Dominio e imagem |
e para imagem ? |
Autor: | João P. Ferreira [ 04 jun 2013, 23:40 ] |
Título da Pergunta: | Re: Dominio e imagem |
fabiocohen Escreveu: e para imagem ? pense que \(x\) e \(y\) varrem todo o \(\R^2\) e veja qual o varrimento que dão na função |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |