Dúvidas sobre todo o género de equações diferenciais, ordinárias ou não.
10 jun 2013, 18:44
Como eu acho a solução geral de:
y’’(t)-y(t)=t²
Grato.
11 jun 2013, 02:06
Boa noite,
Você pode começar a resolver assumindo que \(y(t) = e^{kt}\) ( a tal da solução particular).
Depois derive duas vezes, i.e. \(y''(t) = (e^{kt})'' = k^2e^{kt}\)
Com isso já consegue prosseguir?
11 jun 2013, 12:32
Neste caso concreto, como o segundo membro da equação é um polinómio do segundo grau, será mais útil experimentar uma solução particular que seja "do mesmo tipo" que o segundo membro, isto é, um polinómio de grau 2. Se experimentar uma solução particular do tipo \(y_p(t) = at^2+bt+c\) poderá constatar que \(y_p(t) = -t -2\) é solução da equação diferencial.
Para determinar a solução geral da equação, apenas precisa de somar a sol. particular encontrada com a solução geral da equação homogénea, isto é, com a solução de \(y'' - y = 0\).
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.