Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Encontrar UMA das soluções da EDO (1-x²)y''-2xy'+12y=0
https://forumdematematica.org/viewtopic.php?f=17&t=7423
Página 1 de 1

Autor:  cezaraccioly [ 22 nov 2014, 03:40 ]
Título da Pergunta:  Encontrar UMA das soluções da EDO (1-x²)y''-2xy'+12y=0

Estou com uma lista de EDO's para resolver e não consegui sair dessa:

(1-x²)y''-2xy'+12y=0

Autor:  João P. Ferreira [ 23 nov 2014, 01:54 ]
Título da Pergunta:  Re: Encontrar UMA das soluções da EDO (1-x²)y''-2xy'+12y=0

Trata-se de uma EDO linear de ordem 2, com coeficientes não constantes.

Talvez esta ligação ajude, mas não garanto:

Autor:  Man Utd [ 08 dez 2014, 02:54 ]
Título da Pergunta:  Re: Encontrar UMA das soluções da EDO (1-x²)y''-2xy'+12y=0

\((1-x^2)y''-2xy'+12y=0\)


Usando a solução em série em um ponto ordinário : \(y=\sum_{n=0}^{+\infty} \; a_{n} x^{n}\) :



\((1-x^2)*\sum_{n=2}^{+\infty} \; a_{n} n(n-1) x^{n-2}-2x*\sum_{n=1}^{+\infty} \; a_{n}n x^{n-1}+12\sum_{n=0}^{+\infty} \; a_{n} x^{n}=0\)



\(\sum_{n=2}^{+\infty} \; a_{n} n(n-1) x^{n-2}-\sum_{n=2}^{+\infty} \; a_{n} n(n-1) x^{n}-\sum_{n=1}^{+\infty} \; 2a_{n}n x^{n}+\sum_{n=0}^{+\infty} \; 12a_{n} x^{n}=0\)



\(\sum_{n=0}^{+\infty} \; a_{n+2} (n+2)*(n+1) x^{n}-\sum_{n=0}^{+\infty} \; a_{n} n(n-1) x^{n}-\sum_{n=0}^{+\infty} \; 2a_{n}n x^{n}+\sum_{n=0}^{+\infty} \; 12a_{n} x^{n}=0\)




\(\sum_{n=0}^{+\infty} \; a_{n+2} (n+2)*(n+1) x^{n}-a_{n} n(n-1) x^{n}-2a_{n}n x^{n}+12a_{n} x^{n}=0\)




\(\sum_{n=0}^{+\infty} \; \left[ a_{n+2} (n+2)*(n+1) -a_{n} n(n-1) -2a_{n}n +12a_{n} \right]x^{n}=0\)




Daí a fórmula de recorrência : \(a_{n+2} (n+2)*(n+1) -a_{n} n(n-1) -2a_{n}n +12a_{n} =0\)


Consegue avançar???

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/