Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Solução de Integral Dupla de Logaritmo
https://forumdematematica.org/viewtopic.php?f=17&t=8584
Página 1 de 1

Autor:  calbferreira@2 [ 26 abr 2015, 01:54 ]
Título da Pergunta:  Solução de Integral Dupla de Logaritmo

\(\int_{1}^{e}\int_{1}^{e}ln(xy)dydx\)

Autor:  pedrodaniel10 [ 26 abr 2015, 02:32 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Vamos aplicar integração por partes na integral mais de dentro:


\(u=\ln(xy)
du=\frac{x}{xy}=\frac{1}{y} dy
dv=dy
v=y\)

\(\int_{1}^{e}\ln(xy)\: dy=\ln(xy)\cdot y-\int y\cdot \frac{1}{y} dy =\left [ \ln(xy)\cdot y-y \right ]_{y=1}^e=e\cdot (\ln(xe)-1)-(\ln (x)-1)\)

\(\int_{1}^{e}e\cdot (\ln(xe)-1)-(\ln (x)-1) \:dx=e\int_{1}^{e}\ln(xe)\, dx+(1-e)\int_{1}^{e}dx-\int_{1}^{e}\ln(x)\, dx\)

Veja se já consegue terminar, qualquer coisa estou aqui.

Autor:  calbferreira@2 [ 26 abr 2015, 14:52 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Apenas não entendi como você chegou na parcela abaixo da equação.
...\(+(1-e)\int_{1}^{e}dx-\)...

Autor:  pedrodaniel10 [ 26 abr 2015, 15:12 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Coloquei \(\int_{1}^{e}dx\) em evidencia.

Autor:  calbferreira@2 [ 26 abr 2015, 22:40 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Não consegui chegar à solução final.
Solução: 2e-2

Autor:  Sobolev [ 27 abr 2015, 08:46 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Pode também fazer umas continhas antes de chegar a primitivar...

\(\int_{1}^{e}\int_{1}^{e}ln(xy)dydx = \int_{1}^{e}\int_{1}^{e}\ln x + \ln y dydx = \int_{1}^{e}\int_{1}^{e}\ln x dydx + \int_{1}^{e}\int_{1}^{e} \ln y dydx = (e-1)\int_1^e \ln x dx+ (e-1)\int_1^e \ln y dy = 2(e-1) \int_1^e \ln x dx\)

Autor:  calbferreira@2 [ 27 abr 2015, 18:16 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo

Resolvendo a partir de sua solução:
\(2(e-1)\int_{1}^{e}lnxdx\) = \(2(e-1)\frac{1}{x}_{1}^{e}\) = \(2(e-1)(\frac{1}{e}-1)\) = \((2e-2)(\frac{1}{e}-1)\) =
\(4-\frac{2}{e}-2e\) = ????

Autor:  pedrodaniel10 [ 27 abr 2015, 23:36 ]
Título da Pergunta:  Re: Solução de Integral Dupla de Logaritmo  [resolvida]

A antiderivada de ln x não é 1/x mas sim:

\(\int \ln x\: dx=x(\ln x-1)+C\)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/