Switch to full style
Todas as dúvidas que tenha sobre arranjos simples, completos, combinações ou probabilidades
Responder

Questão de Fatorial

29 mai 2013, 04:19

Olá pessoal. Tudo bem?

Eu não estou conseguindo resolver essa questão.
Podem me ajudar?
Anexos
Imagem10.jpg

Re: Questão de Fatorial

29 mai 2013, 07:52

Sabe-se também que \(C_{n, p} = \frac{n!}{(n - p)!p!}\).

Daí, é só substituir.

\(A_{x, 2} - C_{x, 2} = 10 - x\)

\(\frac{x!}{(x - 2)!} - \frac{x!}{(x - 2)!2!} = 10 - x\)

\(\frac{x(x - 1)(x - 2)!}{(x - 2)!} - \frac{x(x - 1)(x - 2)!}{(x - 2)!2 \cdot 1} = 10 - x\)

\(x(x - 1) - \frac{x(x - 1)}{2} = 10 - x\)

\(2x(x - 1) - x(x - 1) = 20 - 2x\)

\(2x^2 - 2x - x^2 + x - 20 + 2x = 0\)

x² + x - 20 = 0

\((x + 5)(x - 4) = 0\)

\(\fbox{x = 4}\)
Responder