Fórum de Matemática | DÚVIDAS? Nós respondemos!
http://forumdematematica.org/

De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n
http://forumdematematica.org/viewtopic.php?f=19&t=13343
Página 1 de 1

Autor:  aluno20000 [ 10 nov 2017, 20:18 ]
Título da Pergunta:  De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

Alguém me pode ajudar, por favor?

De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas numa caixa?
R: 259456

Muito obrigado

Autor:  jorgeluis [ 11 nov 2017, 02:54 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

aluno20000,
Para cada caixa temos:
8 possibilidades diferentes (Y) com ATÉ 4 bolas diferentes (X, XX, XXX, XXXX) de um total de 6 bolas:

logo, se são 8 caixas, então:

Autor:  aluno20000 [ 11 nov 2017, 09:12 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

jorgeluis Escreveu:
aluno20000,
Para cada caixa temos:
8 possibilidades diferentes (Y) com ATÉ 4 bolas diferentes (X, XX, XXX, XXXX) de um total de 6 bolas:

logo, se são 8 caixas, então:


Obrigado pela ajuda mas nas soluções aparece esta resposta e não percebo porquê : 8^6-8*A(8,2)*C(6,5) = 259456.
A(8,2) é arranjo de 8 dois a dois.
C(6,5) é combinação de 6 cinco a cinco.

Autor:  jorgeluis [ 11 nov 2017, 11:53 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

aluno20000,
já entendi.
6 bolas diferentes arrumadas em 8 caixas diferentes é:

se,
não pode haver caixas contendo mais de 4 bolas, então, devemos subtrair as caixas que possuem 5 e 6 bolas:

mas,
ainda não entendi, como, pode representar caixa com 5 e 6 bolas.

imagino que seja esse o entendimento:
arranjo de 8 caixas contendo 5 e 6 bolas (2 possibilidades):

combinação de 6 bolas (6 a 6) e (5 a 5) (2 possibilidades):


por isso,

Autor:  aluno20000 [ 11 nov 2017, 15:40 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

jorgeluis Escreveu:
aluno20000,
já entendi.
6 bolas diferentes arrumadas em 8 caixas diferentes é:

se,
não pode haver caixas contendo mais de 4 bolas, então, devemos subtrair as caixas que possuem 5 e 6 bolas:

mas,
ainda não entendi, como, pode representar caixa com 5 e 6 bolas.

imagino que seja esse o entendimento:
arranjo de 8 caixas contendo 5 e 6 bolas (2 possibilidades):

combinação de 6 bolas (6 a 6) e (5 a 5) (2 possibilidades):



por isso,





Não percebi. Porque é que é 8^6 e não é 6^8? Desculpa mas não percebi a tua resolução, podias explicar o teu raciocinio por favor?

Autor:  jorgeluis [ 11 nov 2017, 16:10 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

aluno20000,
a potência representa a distribuição (ou arrumação) das bolas.
representa 8 caixas contendo 6 bolas
se, fizer
estaríamos dizendo 6 caixas contendo 8 bolas

Autor:  Rui Carpentier [ 11 nov 2017, 17:22 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

aluno20000 Escreveu:
jorgeluis Escreveu:
aluno20000,
Para cada caixa temos:
8 possibilidades diferentes (Y) com ATÉ 4 bolas diferentes (X, XX, XXX, XXXX) de um total de 6 bolas:

logo, se são 8 caixas, então:


Obrigado pela ajuda mas nas soluções aparece esta resposta e não percebo porquê : 8^6-8*A(8,2)*C(6,5) = 259456.
A(8,2) é arranjo de 8 dois a dois.
C(6,5) é combinação de 6 cinco a cinco.


Tem a certeza que era essa a fórmula que aparecia na resolução? Não seria antes 8^6-8-A(8,2)*C(6,5)? É que as fórmulas são parecidas (diferem apenas de um operador) mas só me faz sentindo a segunda:
Temos maneiras de colocar 6 bolas distintas em 8 caixas distintas, das quais excluimos
8 maneiras de colocar as 6 bolas numa só caixa e
A(8,2)*C(6,5) maneiras de colocar 5 bolas numa só caixa e a outra bola noutra caixa. Neste último caso, há que escolher 5 das 6 bolas (daí o termo C(6,5)) e duas de entre as 8 caixas, a 1ª para colocar as 5 bolas e a 2ª para colocar a restante bola (daí o termo A(8,2)).

Autor:  jorgeluis [ 11 nov 2017, 17:37 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

valeu, Rui,
questão complicada, é difícil de entender mesmo, uma dessas num concurso derruba muita gente!

Autor:  aluno20000 [ 11 nov 2017, 19:36 ]
Título da Pergunta:  Re: De quantas maneiras se podem colocar 6 bolas diferentes em 8 caixas diferentes, não podendo ficar mais de quatro bolas n

Já percebi. Sim, a resposta correta tem de ser 8^6-8-A(8,2)*C(6,5), a resposta que estava nas soluções não faz sentido.

Muito obrigado aos dois pela ajuda :-)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/