Boa tarde!
Uma forma que achei interessante para tentar realizar o produto!
\(\begin{array}{|c|c|c|c|c|c|c|}
\hline
P(x).P(x) & x^3 & x^4 & x^5 & x^6 & x^7 & x^8\\
\hline
x^3 & x^6 & x^7 & \cancel{x^8} & x^9 & x^{10} & x^{11}\\
\hline
x^4 & x^7 & \cancel{x^8} & x^9 & x^{10} & x^{11} & x^{12}\\
\hline
x^5 & \cancel{x^8} & x^9 & x^{10} & x^{11} & x^{12} & x^{13}\\
\hline
x^6 & x^9 & x^{10} & x^{11} & x^{12} & x^{13} & x^{14}\\
\hline
x^7 & x^{10} & x^{11} & x^{12} & x^{13} & x^{14} & x^{15}\\
\hline
x^8 & x^{11} & x^{12} & x^{13} & x^{14} & x^{15} & x^{16}\\
\hline
\end{array}\)
Somando as diagonais - veja o exemplo do \(x^8\) - com mesmos expoentes terá:
\(x^{16}+2x^{15}+3x^{14}+4x^{13}+5x^{12}+6x^{11}+5x^{10}+4x^9+3x^8+2x^7+x^6\)
Agora, como queremos o produto à quarta, podemos multiplicar novamente:
\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
P(x)^2.P(x)^2 & x^6 & 2x^7 & 3x^8 & 4x^9 & 5x^{10} & 6x^{11} & 5x^{12} & 4x^{13} & 3x^{14} & 2x^{15} & x^{16}\\
\hline
x^6 & x^{12} & 2x^{13} & \cancel{3x^{14}} & 4x^{15} & 5x^{16} & 6x^{17} & 5x^{18} & 4x^{19} & 3x^{20} & 2x^{21} & x^{22}\\
\hline
2x^7 & 2x^{13} & \cancel{4x^{14}} & 6x^{15} & 8x^{16} & 10x^{17} & 12x^{18} & 10x^{19} & 8x^{20} & 6x^{21} & 4x^{22} & 2x^{23}\\
\hline
3x^8 & \cancel{3x^{14}} & 6x^{15} & 9x^{16} & 12x^{17} & 15x^{18} & 18x^{19} & 15x^{20} & 12x^{21} & 9x^{22} & 6x^{23} & 3x^{24}\\
\hline
4x^9 & 4x^{15} & 8x^{16} & 12x^{17} & 16x^{18} & 20x^{19} & 24x^{20} & 20x^{21} & 16x^{22} & 12x^{23} & 8x^{24} & 4x^{25}\\
\hline
5x^{10} & 5x^{16} & 10x^{17} & 15x^{18} & 20x^{19} & 25x^{20} & 30x^{21} & 25x^{22} & 20x^{23} & 15x^{24} & 10x^{25} & 5x^{26}\\
\hline
6x^{11} & 6x^{17} & 12x^{18} & 18x^{19} & 24x^{20} & 30x^{21} & 36x^{22} & 30x^{23} & 24x^{24} & 18x^{25} & 12x^{26} & 6x^{27}\\
\hline
5x^{12} & 5x^{18} & 10x^{19} & 15x^{20} & 20x^{21} & 25x^{22} & 30x^{23} & 25x^{24} & 20x^{25} & 15x^{26} & 10x^{27} & 5x^{28}\\
\hline
4x^{13} & 4x^{19} & 8x^{20} & 12x^{21} & 16x^{22} & 20x^{23} & 24x^{24} & 20x^{25} & 16x^{26} & 12x^{27} & 8x^{28} & 4x^{29}\\
\hline
3x^{14} & 3x^{20} & 6x^{21} & 9x^{22} & 12x^{23} & 15x^{24} & 18x^{25} & 15x^{26} & 12x^{27} & 9x^{28} & 6x^{29} & 3x^{30}\\
\hline
2x^{15} & 2x^{21} & 4x^{22} & 6x^{23} & 8x^{24} & 10x^{25} & 12x^{26} & 10x^{27} & 8x^{28} & 6x^{29} & 4x^{30} & 2x^{31}\\
\hline
x^{16} & x^{22} & 2x^{23} & 3x^{24} & 4x^{25} & 5x^{26} & 6x^{27} & 5x^{28} & 4x^{29} & 3x^{30} & 2x^{31} & x^{32}\\
\hline
\end{array}\)
Somando as diagonais - veja o exemplo do \(x^{14}\), que dá na soma 10 - com mesmos expoentes terá:
\(x^{32}+4x^{31}+10x^{30}+20x^{29}+35x^{28}+56x^{27}+80x^{26}+104x^{25}+125x^{24}+140x^{23}+146x^{22}+140x^{21}+125x^{20}+104x^{19}+80x^{18}+56x^{17}+35x^{16}+20x^{15}+10x^{14}+4x^{13}+x^{12}\)
Espero que tenha 'facilitado'...

Abraços!