Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Achar o menor valor de um coeficiente de uma função do 2º grau
https://forumdematematica.org/viewtopic.php?f=21&t=10426
Página 1 de 1

Autor:  Fernando Magalhães [ 14 fev 2016, 12:32 ]
Título da Pergunta:  Achar o menor valor de um coeficiente de uma função do 2º grau

Na equação \(ax^{2} + bx + c = 0\), os coeficientes a, b e c são inteiros e a>0. Sabe-se que uma das raízes é 2 / 5 - sqrt{11}.
Então, o menor valor possível de a é:

Autor:  Fraol [ 15 fev 2016, 17:45 ]
Título da Pergunta:  Re: Achar o menor valor de um coeficiente de uma função do 2º grau

Oi,

2 / 5 - sqrt{11} é \(\frac{2}{5} - \sqrt{11}\) ou \(\frac{2}{5 - \sqrt{11}}\) ? a primeira ou a segunda forma?

Eu vou supor que seja a primeira forma, se for a segunda o raciocínio é parecido.
Também vou supor que a equação tenha duas raízes reais distintas.

\(\frac{2}{5} - \sqrt{11} = \frac{2-5\sqrt{11}}{5} = \frac{2-\sqrt{5^2 \cdot 11}}{5}\)

Agora basta você comparar com a expressão da fórmula que dá uma das raízes da equação de segundo grau: \(x = \frac{-b - \sqrt{b^2-4ac}}{2a}\) e assim poderá determinar o valor de \(a\) (neste caso 5/2).

Obs: Penso que determinei um valor de a. Talvez não seja o menor.

Autor:  Fraol [ 15 fev 2016, 18:02 ]
Título da Pergunta:  Re: Achar o menor valor de um coeficiente de uma função do 2º grau  [resolvida]

Vamos supor que a raiz dada no enunciado seja \(\frac{2}{5-\sqrt{11}} = \frac{10 + 2\sqrt{11}}{14}\). Analogamente ao raciocínio acima, o valor de \(a\) seria 7.

Aliás, parece ser esta a raiz dada, já que a resposta deve ser um inteiro.

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/