Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

largest term in sequence
https://forumdematematica.org/viewtopic.php?f=21&t=1974
Página 1 de 1

Autor:  kinu [ 09 mar 2013, 07:11 ]
Título da Pergunta:  largest term in sequence

The Largest term in the Sequence \(\displaystyle \frac{1}{503}\;,\frac{4}{524}\;,\frac{9}{581}\;,\frac{16}{692},.....\) is

Autor:  Fraol [ 09 mar 2013, 14:06 ]
Título da Pergunta:  Re: largest term in sequence

Good morning,

The main difficulty in this problem was to find the general term of the sequence. Especially in relation to the denominator. After some effort we have the following:

\(a_n = \frac{n^2}{500 + 3n^3}\)

Clearly, when \(n\) tends to infinity then \(a_n\) tends to \(0\) so \((a_n)\) have a largest term.

So we must derivate \(a_n\):

\(a'_n = \frac{2n(500+3n^3)-n^2(9n^2)}{(500+3n^3)2}\)

Now we set this result to zero to find \(n\):

\(a'_n = \frac{2n(500+3n^3)-n^2(9n^2)}{(500+3n^3)2} = 0 <=> 2n(500+3n^3)-n^2(9n^2) = 0 <=> 2n(500+3n^3) = n^2(9n^2)\)

So \(1000 + 6n^3 = 9n^3 <=> n^3 = \frac{1000}{3} <=> n \approx 6,9\), which leads to \(n = 7\) and \(a_7 = \frac{7^2}{(500+3\cdot7^3)}\) is the largest term in the sequence.

Autor:  Fraol [ 09 mar 2013, 14:15 ]
Título da Pergunta:  Re: largest term in sequence

Hi,

To verify the above results, considering that the general term formula is correct, I tabulated the first 15 terms of the sequence:

Código:
n       a_n
1    0,0019881
2    0,0076336
3    0,0154905
4    0,0231214
5    0,0285714
6    0,0313589
7    0,0320471
8    0,0314342
9    0,0301451
10   0,0285714
11   0,0269308
12   0,0253343
13   0,0238330
14   0,0224462
15   0,0211765

.

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/