Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Sistema Linear - Dificuldade em calculá-lo
https://forumdematematica.org/viewtopic.php?f=22&t=9516
Página 1 de 1

Autor:  Estudioso [ 19 set 2015, 03:22 ]
Título da Pergunta:  Sistema Linear - Dificuldade em calculá-lo

Como resolvo o sistema linear abaixo?

{2x - 8y + 24z + 18w = 84
{4x - 14y + 52z + 42w = 190

Obrigado!

Autor:  danjr5 [ 20 set 2015, 00:41 ]
Título da Pergunta:  Re: Sistema Linear - Dificuldade em calculá-lo

Eu o faria da seguinte forma:

\(\begin{bmatrix} 2 & - 8 & 24 & 18 & | & 84 \\ 4 & - 14 & 52 & 42 & | & 190 \end{bmatrix}\)

\(\begin{bmatrix} 2 & - 8 & 24 & 18 & | & 84 \\ 4 & - 14 & 52 & 42 & | & 190 \end{bmatrix} \\\\ L_1 \rightarrow \frac{L_1}{2} \\\\ L_2 \rightarrow \frac{L_2}{2}\)

\(\begin{bmatrix} 1 & - 4 & 12 & 9 & | & 42 \\ 2 & - 7 & 26 & 21 & | & 95 \end{bmatrix} \\\\ L_2 \rightarrow L_2 - 2 \cdot L_1\)

\(\begin{bmatrix} 1 & - 4 & 12 & 9 & | & 42 \\ 0 & 1 & 2 & 3 & | & 11 \end{bmatrix}\)

\(\begin{cases} x - 4y + 12z + 9w = 42 \\ y + 2z + 3w = 11 \end{cases}\)

Considerando \(\fbox{w = p}\) e \(\fbox{z = q}\), temos que:

\(\\ y + 2z + 3w = 11 \\ \fbox{y = - 2q - 3p + 11}\)

Por fim,

\(\\ x - 4y + 12z + 9w = 42 \Rightarrow \fbox{x = - 20q - 21p + 86}\)

Ou seja, sistema possível e indeterminado.

Autor:  Estudioso [ 20 set 2015, 13:23 ]
Título da Pergunta:  Re: Sistema Linear - Dificuldade em calculá-lo

danjr5, sou péssimo com esse método de Gauss Jordan. Existe alguma outra forma de resolvê-lo?

Agradeço muito.

Autor:  danjr5 [ 20 set 2015, 23:39 ]
Título da Pergunta:  Re: Sistema Linear - Dificuldade em calculá-lo

Podes multiplicar a primeira equação por \(- 2\); somá-la à segunda; a partir da equação formada pelas variáveis \(y\), \(z\) e \(w\), podemos colocar \(y\) em função de \(z\) e \(w\); por fim, substitua \(y\) numa das equações do sistema linear, obtendo dessa forma \(x\) em função de \(z\) e \(w\).

Acho que esse procedimento recebe o nome de parametrização, não estou mui certo!

Aguardo retorno.

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/