13 nov 2016, 18:43
14 nov 2016, 01:42
14 nov 2016, 16:06
danjr5 Escreveu:\(x^2 = \mid \mid \vec{u} \mid \mid^2 + 2 \cdot \mid \mid \vec{u} \mid \mid \cdot \mid \mid \vec{v} \mid \mid \cos \theta + \mid \mid \vec{v} \mid \mid^2\)
\(x^2 = 3 \cdot 3 + 2 \cdot \cancel{3} \cdot 4 \cdot \frac{\pi}{\cancel{3}} + 4 \cdot 4\)
16 nov 2016, 02:42