Switch to full style
Todas as dúvidas que tiver sobre Trigonometria (ângulos, senos, cosenos, tangentes, etc.), Geometria Plana, Geometria Espacial ou Geometria Analítica
Responder

length of side of triangleABC

02 abr 2012, 15:55

In a triangle ABC, if BC =1 , sin (A/2) = x1 , sin (B/2)=x2 , cos (A/2) = y1 , cos(B/2)=y2 and (x1/x2)^2006 = (y1/y2)^2007 , then the length of AC is

Re: length of side of triangleABC

26 jan 2013, 00:29

Hello, good evening,

Well, here we go. This topic is a little old but I'll try not to leave it without help.

We have:
\(sin(A) = sin(2 \cdot A/2) = 2 \cdot sin(A/2) \cdot cos(A/2) = 2 \cdot x_1 \cdot y_1\).
\(sin(B) = sin(2 \cdot B/2) = 2 \cdot sin(B/2) \cdot cos(B/2) = 2 \cdot x_2 \cdot y_2\).

By the law of sines:
\(\frac{AC}{sin(B)} = \frac{BC}{sin(A)} \Rightarrow \frac{AC}{2 \cdot x_2 \cdot y_2 } = \frac{1}{2 \cdot x_1 \cdot y_1}\)

then:

\(AC = \left( \frac{x_2}{x_1} \right) \cdot \left( \frac{y_2}{y_1} \right)\).

Now you can use the provided relationships between \(x_1, x_2, y_1\) and \(y_2\) and try to finish the exercise. Ok?
Responder