a) Considerando o triângulo [H L J] e sabendo que é retângulo em L pela fórmula do Teorema de Pitágoras podemos determinar:
como a base HILJ é um quadrado vem HL= LJ= x então:
(12√2_)^2= HL^2 + LJ^2 <=> (12√2_)^2=2x^2 <=> x= √(144.2/2) <=> x= 12
Por outro lado, CE= HI/2 <=> CE= 6 e AB= FG/2 <=> AB= 2 e CD= AB então CE - CD= 4
Como o triângulo [B D E] tem o ângulo BDE= 90º e o ângulo BED= 45º tem de ter o ângulo DBE= 45º logo trata-se de um triângulo isósceles onde: BD= DE= 4
Por fim, AC que é a altura do tronco da pirâmide é igual a BD.
Assim, a altura é igual a 4 cm como queríamos demonstrar.
b) Cálculo de BE:
BE^2= ND^2 + DE^2 <=> BE^2= 4^2 + 4^2 <=> BE= √32= 4√2
Atrapézio= (JI + NG)/2 . BE
At= (12+4)/2 x 4√2 <=> At= 32√2 e Al= 4At logo Al= 128√2
c) ATotal= Al + Abasemaior + Abasemenor
AT= 128√2 + 12^2 + 4^2 <=> AT= 128√2 + 160 cm²
*Nota: o número máximo pelo qual podemos dividir simultaneamente 128 e 160 é 32. Assim pondo 32 em evidência temos:
AT= 32( 4√2 + 5) cm²
- Anexos
-

- IMG_20140921_091130_779%5B1%5D.jpg (19.92 KiB) Visualizado 2898 vezes