Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
Trigonometric equation - resolver sec(x)+csc(x)=c https://forumdematematica.org/viewtopic.php?f=23&t=147 |
Página 1 de 1 |
Autor: | kinu [ 22 jan 2012, 14:49 ] |
Título da Pergunta: | Trigonometric equation - resolver sec(x)+csc(x)=c |
Prove that equation \(\sec x+\csc x = c\) has \(2\) solution when \(c^2<8\) and \(4\) solution when \(c^2>8\) where \(0<x<2\pi\) |
Autor: | Rui Carpentier [ 24 jan 2012, 16:55 ] |
Título da Pergunta: | Re: Trigonometric equation |
Just a sketch of a proof: Let \(f(x)=\sec(x)+\csc(x)\) Find \(f'\) and show that: \(f'(x)>0\) for \(x\in (\frac{\pi}{4},\frac{\pi}{2})\cup (\frac{\pi}{2},\pi)\cup (\pi,\frac{5\pi}{4})\) ; \(f'(x)<0\) for \(x\in (0,\frac{\pi}{4})\cup (\frac{5\pi}{4},\frac{3\pi}{2})\cup (\frac{3\pi}{2},2\pi)\) and \(f'(x)=0\) for \(x=\frac{\pi}{4}\vee x=\frac{5\pi}{4}\). Conclude that \(f\) is strictly decreasing on the intervals \((0,\frac{\pi}{4}), (\frac{5\pi}{4},\frac{3\pi}{2})\) and \((\frac{3\pi}{2},2\pi)\) and is strictly increasing on the intervals \((\frac{\pi}{4},\frac{\pi}{2}), (\frac{\pi}{2},\pi)\) and \((\pi,\frac{5\pi}{4})\). Thus it is one-to-one in those intervals. Calculate \(\lim_{x\rightarrow 0^+}f(x)=+\infty\), \(f(\frac{\pi}{4})=\sqrt{8}\), \(\lim_{x\rightarrow \frac{\pi}{2}^-}f(x)=+\infty\), \(\lim_{x\rightarrow \frac{\pi}{2}^+}f(x)=-\infty\), \(\lim_{x\rightarrow \pi^-}f(x)=+\infty\), \(\lim_{x\rightarrow \pi^+}f(x)=-\infty\), \(f(\frac{\pi}{4})=-\sqrt{8}\), \(\lim_{x\rightarrow \frac{3\pi}{2}^-}f(x)=-\infty\), \(\lim_{x\rightarrow \frac{3\pi}{2}^+}f(x)=+\infty\) and \(\lim_{x\rightarrow 2\pi^-}f(x)=-\infty\). Then conclude that \(f(x)=c\) has 2 solutions when \(c^2<8\) and 4 solutions when \(c^2>8\). |
Autor: | kinu [ 26 jan 2012, 08:47 ] |
Título da Pergunta: | Re: Trigonometric equation |
Thanks Rui |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |