Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
length of side of triangleABC https://forumdematematica.org/viewtopic.php?f=23&t=275 |
Página 1 de 1 |
Autor: | kinu [ 02 abr 2012, 15:55 ] |
Título da Pergunta: | length of side of triangleABC |
In a triangle ABC, if BC =1 , sin (A/2) = x1 , sin (B/2)=x2 , cos (A/2) = y1 , cos(B/2)=y2 and (x1/x2)^2006 = (y1/y2)^2007 , then the length of AC is |
Autor: | Fraol [ 26 jan 2013, 00:29 ] |
Título da Pergunta: | Re: length of side of triangleABC |
Hello, good evening, Well, here we go. This topic is a little old but I'll try not to leave it without help. We have: \(sin(A) = sin(2 \cdot A/2) = 2 \cdot sin(A/2) \cdot cos(A/2) = 2 \cdot x_1 \cdot y_1\). \(sin(B) = sin(2 \cdot B/2) = 2 \cdot sin(B/2) \cdot cos(B/2) = 2 \cdot x_2 \cdot y_2\). By the law of sines: \(\frac{AC}{sin(B)} = \frac{BC}{sin(A)} \Rightarrow \frac{AC}{2 \cdot x_2 \cdot y_2 } = \frac{1}{2 \cdot x_1 \cdot y_1}\) then: \(AC = \left( \frac{x_2}{x_1} \right) \cdot \left( \frac{y_2}{y_1} \right)\). Now you can use the provided relationships between \(x_1, x_2, y_1\) and \(y_2\) and try to finish the exercise. Ok? |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |