Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Fatec-SP
https://forumdematematica.org/viewtopic.php?f=23&t=3532
Página 1 de 1

Autor:  ddggen1 [ 08 set 2013, 18:31 ]
Título da Pergunta:  Fatec-SP

Em um trecho reto e plano de uma praia, um topógrafo que está situado
em uma rocha (ponto B) observa uma árvore à beira de uma ilha (ponto A).
Para estimar a distância entre essa ilha e a praia, ele usa um teodolito,
instrumento de medição de ângulos. Primeiramente, ele se situa no
ponto B e mede um ângulo de 90º entre a praia e a linha de visão da árvore.
Depois disso, ele sai do ponto B, desloca-se em linha reta 160 metros pela
praia e mede, de um ponto C, um ângulo de 50º também entre a praia e a
linha de visão da árvore, conforme a figura.
Considerando que essa parte da praia se situa no mesmo nível que a ilha, a
distância da rocha (ponto B) até a árvore usada como referencial (ponto A)
é, em metros,

===
ADOTE;
sen 50° = 0,76
cos 50° = 0,64

Anexo:
sadsa.png
sadsa.png [ 12.78 KiB | Visualizado 5919 vezes ]


(A) 250.
(B) 230.
(C) 210.
(D) 190.
(E) 170.

Bom Galera, estou aproximando o resultado, más não bate com o do gabarito! Aguardo!

Autor:  vestibulando123 [ 08 set 2013, 19:10 ]
Título da Pergunta:  Re: Fatec-SP

Oi,

Nosso objetivo é calcular a distância de A até B(cateto oposto ao ângulo 50º)

I. Calcular a hipotenusa

A relação cosseno é a razão entre o cateto adjacente ao ângulo e a hipotenusa. Como temos o valor do cateto adjacente ao ângulo 50º, podemos calcular a hipotenusa.(Obs.: não poderíamos utilizar a relação entre cateto oposto e hipotenusa(seno), pois não temos os valores dos lados ainda).

\(0,64=\frac{160m}{AC}\)

\(AC=\frac{160m}{0,64}\)

\(AC=250m\)

II. Cálculo do lado AB

Agora, podemos calcular por seno

\(0,76=\frac{AB}{250m}\)

\(AB=190m\)

Por gentileza, verifique o valor com a resposta do gabarito.

Espero ter ajudado.

Um abraço!

Autor:  ddggen1 [ 03 Oct 2013, 00:00 ]
Título da Pergunta:  Re: Fatec-SP

Ok, grato!

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/