Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 10 nov 2024, 20:19

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
MensagemEnviado: 16 nov 2017, 11:13 
Offline

Registado: 16 nov 2017, 11:07
Mensagens: 1
Localização: Brasil - IFMG
Agradeceu: 0 vez(es)
Foi agradecido: 0 vez(es)
Olá a todos, alguém pode me ajudar nessa questão.
Calcule a menor distância do ponto (0, 2) à curva de equação y = x^2 − 4.
Resposta: \sqrt{23/2}


Topo
 Perfil  
 
MensagemEnviado: 17 nov 2017, 01:43 
Offline

Registado: 08 jan 2015, 18:39
Mensagens: 930
Localização: Campo Grande - MS - Brasil
Agradeceu: 14 vezes
Foi agradecido: 475 vezes
Boa noite!

Eu procuraria o seguinte: Qual reta é perpendicular à equação dada passando pelo ponto (0,2)?

Derivando a equação para obter a inclinação da reta tangente:
\(y{=}x^2-4
y'{=}m{=}2x\)

A reta perpendicular e a reta tangente mantém as seguintes relações entre elas relativamente aos coeficientes angulares:
\(m.m'=-1
m.(2x)=-1
m=\dfrac{-1}{2x}\)

Então, substituindo o ponto (0,2) como ponto que a reta passa e (x_0,y_0) como ponto interseção com a equação, conseguiremos calcular a interseção. Então, temos:
\(y-y_0=m(x-x_0)
2-y_0=\dfrac{-1}{2x_0}\cdot(0-x_0)
2-y_0=\dfrac{1}{2}
y_0=\dfrac{3}{2}\)

Para obter \(x_0\), como este ponto pertence à equação:
\(y=x^2-4
\dfrac{3}{2}=x_0^2-4
x_0^2=4+\dfrac{3}{2}
x_0^2=\dfrac{11}{2}
x_0=\pm\dfrac{\sqrt{22}}{2}\)

Então, a menor distância entre o ponto (0,2) e a equação é a distância entre este ponto e o (x_0,y_0) obtidos.

\(d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
d=\sqrt{\left(\dfrac{\sqrt{22}}{2}\right)^2+\left(2-\dfrac{3}{2}\right)^2}
d=\sqrt{\dfrac{22}{4}+\dfrac{1}{4}}
d=\sqrt{\dfrac{23}{4}}
d=\dfrac{\sqrt{23}}{2}\)

Espero ter ajudado!

_________________
Baltuilhe
"Nós somos o que fazemos repetidamente. Excelência, então, não é um modo de agir, é um hábito." Aristóteles


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 9 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para:  
cron