Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 22 jan 2020, 13:18

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
 Título da Pergunta: Volume Máximo de uma Caixa
MensagemEnviado: 07 mar 2018, 18:44 
Offline

Registado: 07 mar 2018, 18:15
Mensagens: 5
Localização: ceara-Pacajus
Agradeceu: 2 vezes
Foi agradecido: 0 vez(es)
Um tanque de armazenamento ou de armazenagem, o qual também é designado por reservatório, é um recipiente destinado a armazenar fluidos à pressão atmosférica ou pressões superiores a ela. Na indústria de processo, a maior parte dos tanques de armazenamento são construídos para armazenar líquidos.
Assim sendo, sabe-se que uma indústria possui tanques de armazenamento de fluidos (efluentes líquidos) e um deles precisa, com urgência, de um revestimento antioxidante, que é realizado com tintas especiais, para evitar o desgaste e a corrosão. O responsável da empresa prestadora do serviço informou que o trabalho custaria R$ 50,00/m². Considerando o tanque como uma “caixa” de base quadrada, calcule o volume máximo do tanque em questão se o processo de seu revestimento custou R$ 4.800,00.


Utilize os multiplicadores de Lagrange para esse problema de maximização.

Por favor Urgente


Topo
 Perfil  
 
 Título da Pergunta: Re: Volume Máximo de uma Caixa
MensagemEnviado: 07 mar 2018, 19:16 
Offline

Registado: 01 fev 2018, 11:56
Mensagens: 216
Localização: Lisboa
Agradeceu: 11 vezes
Foi agradecido: 63 vezes
Se designar pos x e y a medida da base (quadrada) e a altura, respetivamente, então o volume é dado por

\(v(x,y) = x^2 y\)

Por outro lado lado, como a superfície é dada por \(2x^2 + 4 xy\) e sabemos que ela é \(\frac{4800}{50} = 96 m^2\), sabemos que

\(2x^2+ 4xy = 96 \Leftrightarrow x^2 + 2xy - 48 = {0}\)

Quer portanto maximizar a função \(v(x,y) = x^2 y\), sujeita à restrição \(x^2 + 2xy - 48 = {0}\). Nas condições apropriadas (verifique-as!) o maximizante será ponto crítico da função lagrangiana

\(L(x,y,\lambda) = x^2y + \lambda(x^2+2xy-48)\)

Fazendo isso irá verificar que x = y = 4.


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizador a ver este Fórum: Nenhum utilizador registado e 1 visitante


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: