Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 19 jun 2025, 15:07

Os Horários são TMG [ DST ]


Switch to mobile style


Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
MensagemEnviado: 16 fev 2015, 03:06 
Offline

Registado: 16 fev 2015, 02:53
Mensagens: 3
Localização: uberlandia
Agradeceu: 0 vez(es)
Foi agradecido: 0 vez(es)
Encontrar a área entre o eixo x e um arco da curva y = cos(5x)

OBS: já desenhei o gráfico. Porém não consigo montar a integral visto que não sei qual é a função que limita inferiormente e superiormente.

Grato.


Topo
 Perfil  
 
MensagemEnviado: 16 fev 2015, 04:03 
Offline

Registado: 11 jan 2015, 02:31
Mensagens: 539
Localização: Covilhã
Agradeceu: 7 vezes
Foi agradecido: 298 vezes
Este exercício vai englobar algo que muito provavelmente já deu anos anteriores que são as equações trignométricas. Para descobrir os limites de integração de uma curva basta descobrir a equação geral para o qual:
\(\cos (5x)=0
\cos (5x)=\cos (\frac{\pi}{2})
5x=\frac{\pi }{2}+2k\pi\: \vee \: 5x=-\frac{\pi }{2}+2k\pi,\: k\in \mathbb{Z}
x=\frac{\pi }{10}+\frac{2k\pi}{5}\: \vee \: x=-\frac{\pi }{10}+\frac{2k\pi}{5},\: k\in \mathbb{Z}\)

Chegando aqui basta atribuir valores a k, o mais simples será k=0, para o qual vem:
\(x=\frac{\pi }{10}\: \vee \:x=-\frac{\pi }{10}\)

E aí está um limite de integração:

\(\int_{-\pi/10}^{\pi/10}\cos(5x)\:dx\)


Anexos:
c8b647184d122ba124f1d5b238b1b250.png
c8b647184d122ba124f1d5b238b1b250.png [ 37.53 KiB | Visualizado 1576 vezes ]
Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 14 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: