Olá :D
A fórmula para o comprimento de curva é : \(\int_{c}^{d} \; \sqrt{1+[f^{\prime}(y)]^{2}} \; dy\) , então ficamos com :
\(\LARGE \int_{1}^{2} \; \sqrt{1+\frac{(y^6-1)^2}{4y^6}} \; dy\)
\(\LARGE \int_{1}^{2} \; \sqrt{\frac{(y^6+1)^2}{4y^6}} \; dy\)
\(\LARGE \frac{1}{2} \; \times \; \int_{1}^{2} \; \sqrt{\frac{(y^6+1)^2}{y^6}} \; dy\)
Faça \(u=\frac{1}{y^6} \;\;\; \Rightarrow \;\;\; du=-\frac{6}{y^7} \; dy \;\;\; \Rightarrow \;\;\; dy=-\frac{y^7}{6} du \;\;\; \Rightarrow \;\;\; dy=-\frac{1}{6u^{\frac{7}{6}}}du\) , Para \(x=1\) teremos \(u=1\) e para \(x=2\) teremos \(u=\frac{1}{64}\), então :
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \sqrt{\frac{ (\frac{\frac{1}{u}+1}{u})^2}{\frac{1}{u}}}*\frac{1}{u^{\frac{7}{6}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \frac{\frac{u+1}{u}}{\sqrt{\frac{1}{u}}}*\frac{1}{u^{\frac{7}{6}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \frac{u+1}{u}*\sqrt{u}*\frac{1}{u^{\frac{7}{6}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \frac{u+1}{\sqrt{u}}*\frac{1}{u^{\frac{7}{6}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \frac{u+1}{{u^{\frac{5}{3}}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; \frac{u}{{u^{\frac{5}{3}}}}+\frac{1}{{u^{\frac{5}{3}}}} \; du\)
\(\LARGE -\frac{1}{12} \; \times \; \int_{1}^{\frac{1}{64}} \; u^{-\frac{2}{3}}+u^{-\frac{5}{3}} \; du\)
Agora é fácil.Conclua.