We want to solve \(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})\)
We shall use primitivation by parts
\(Pu'v=uv-Pv'u \\ \\ u'=x \ \ v=ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})\)
\(u=\frac{x^2}{2}\)
\(v'=\frac{(\frac{4-\sqrt{x}}{4+\sqrt{x}})'}{\frac{4-\sqrt{x}}{4+\sqrt{x}}}=\frac{4}{\sqrt{x}(x-16)}\)
Then
\(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}) = \frac{x^2}{2}.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})-P\frac{4}{\sqrt{x}(x-16)}.\frac{x^2}{2}\)
Now we just need to solve the primitive on the right side of the equation:
\(P\frac{2.x^2}{\sqrt{x}(x-16)}\)
To solve that, now we'll make a substitution \(\sqrt{x}=t \ <=> \ x=t^2 \ <=> \ x'=2t\)
Then we have to solve now
\(P\frac{2.t^4}{t(t^2-16)}.2t = 4P\frac{t^4}{t^2-16}\)
\(\frac{t^4}{t^2-16}\) it is a rational function that we'll need to divide and decomposite
it's possible to prove that
\(\frac{t^4}{t^2-16}=t^2+16+\frac{256}{t^2-16}\)
Now let's calculate
\(P\frac{t^4}{t^2-16}=P(t^2+16+\frac{256}{t^2-16})=\frac{t^3}{3}+16t+32.ln(\frac{4-t}{4+t})+C\)
Now we just need to combine everything together remembering that \(x=t^2\)
\(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}) = \frac{x^2}{2}.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})-4(\frac{x^{3/2}}{3}+16\sqrt{x}+32.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}))+C\)
I suppose almost 100% sure that everything it is correct
Now you just need to aply the fundamental calculus theorem to solve the integral
You can confirm the result here
http://www.wolframalpha.com/input/?i=integrate+x*ln%28%284-sqrt%28x%29%29%2F%284%2Bsqrt%28x%29%29%29Take care