Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
Calcular a derivada da função dada https://forumdematematica.org/viewtopic.php?f=6&t=13122 |
Página 1 de 1 |
Autor: | Gabriela Amaral [ 11 set 2017, 00:49 ] |
Título da Pergunta: | Calcular a derivada da função dada |
Calcule (passo a passo) a derivada da função a seguir: GABARITO: \(f'(x)=2x^5-4x^{3}+\frac{4x}{3}+\frac{1}{3}+\frac{1}{3x^{2}}\) \(f(x)=\frac{1}{3}(x^{5}-2x^{3}+1)\cdot (x-\frac{1}{x})\) ![]() |
Autor: | danko71 [ 11 set 2017, 17:52 ] |
Título da Pergunta: | Re: Calcular a derivada da função dada [resolvida] |
\(f(x)=\frac{1}{3}(x^5-2x^3+1)(x-\frac{1}{x})\) \(f(x)=(\frac{x^5}{3}-\frac{2x^3}{3}+\frac{1}{3})(x-\frac{1}{x})\) \(f(x)=\frac{x^6}{3}-\frac{x^5}{3x}-\frac{2x^4}{3}+\frac{2x^3}{3x}+\frac{x}{3}-\frac{1}{3x}\) \(f(x)=\frac{x^6}{3}-(\frac{x^4}{3}+\frac{2x^4}{3})+\frac{2x^2}{3}+\frac{x}{3}-\frac{1}{3x}\) \(f(x)=\frac{x^6}{3}-x^4+\frac{2x^2}{3}+\frac{x}{3}-\frac{x^{-1}}{3}\) \(f'(x)=\frac{6x^5}{3}-4x^3+\frac{4x}{3}+\frac{1}{3}+\frac{x^{-2}}{3}\) \(f'(x)=2x^5-4x^3+\frac{4x}{3}+\frac{1}{3}+\frac{1}{3x^2}\) |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |