Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Calcular a derivada da função dada
https://forumdematematica.org/viewtopic.php?f=6&t=13122
Página 1 de 1

Autor:  Gabriela Amaral [ 11 set 2017, 00:49 ]
Título da Pergunta:  Calcular a derivada da função dada

Calcule (passo a passo) a derivada da função a seguir:
GABARITO: \(f'(x)=2x^5-4x^{3}+\frac{4x}{3}+\frac{1}{3}+\frac{1}{3x^{2}}\)


\(f(x)=\frac{1}{3}(x^{5}-2x^{3}+1)\cdot (x-\frac{1}{x})\)
:(

Autor:  danko71 [ 11 set 2017, 17:52 ]
Título da Pergunta:  Re: Calcular a derivada da função dada  [resolvida]

\(f(x)=\frac{1}{3}(x^5-2x^3+1)(x-\frac{1}{x})\)

\(f(x)=(\frac{x^5}{3}-\frac{2x^3}{3}+\frac{1}{3})(x-\frac{1}{x})\)

\(f(x)=\frac{x^6}{3}-\frac{x^5}{3x}-\frac{2x^4}{3}+\frac{2x^3}{3x}+\frac{x}{3}-\frac{1}{3x}\)

\(f(x)=\frac{x^6}{3}-(\frac{x^4}{3}+\frac{2x^4}{3})+\frac{2x^2}{3}+\frac{x}{3}-\frac{1}{3x}\)

\(f(x)=\frac{x^6}{3}-x^4+\frac{2x^2}{3}+\frac{x}{3}-\frac{x^{-1}}{3}\)

\(f'(x)=\frac{6x^5}{3}-4x^3+\frac{4x}{3}+\frac{1}{3}+\frac{x^{-2}}{3}\)

\(f'(x)=2x^5-4x^3+\frac{4x}{3}+\frac{1}{3}+\frac{1}{3x^2}\)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/