Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
P x.ln((4-sqrt(x))/(4+sqrt(x))) https://forumdematematica.org/viewtopic.php?f=6&t=65 |
Página 1 de 1 |
Autor: | kinu [ 25 nov 2011, 05:00 ] |
Título da Pergunta: | P x.ln((4-sqrt(x))/(4+sqrt(x))) |
\(\displaystyle \int_{0}^{4}x.\ln\left(\frac{4-\sqrt{x}}{4+\sqrt{x}}\right)dx\) |
Autor: | João P. Ferreira [ 25 nov 2011, 10:05 ] |
Título da Pergunta: | Re: Integral |
já experimentou fazer por partes... Derivar o ln e primitivar o x ? |
Autor: | kinu [ 25 nov 2011, 10:35 ] |
Título da Pergunta: | Re: Integral |
i have tried like substitute \(\displaystyle \frac{4-\sqrt{x}}{4+\sqrt{x}}=t\Leftrightarrow \frac{8}{2\sqrt{x}}=-\left(\frac{t+1}{t-1}\right)\) \(\displaystyle \frac{\sqrt{x}}{4} =\frac{1-t}{1+t}\) but convert in very Lengthy Integrant thank |
Autor: | João P. Ferreira [ 25 nov 2011, 11:14 ] |
Título da Pergunta: | Re: Integral |
now based on your calculus you just have to calculate \(\int 16(\frac{1-t}{1+t})^2 . ln(t).32.\frac{1-t}{1+t}.\frac{-2t}{(1+t)^2}dt\) i suppose it gets too complicated ![]() try with one of the trigonometric transformations for example the tangent one for sure it will work |
Autor: | João P. Ferreira [ 25 nov 2011, 11:40 ] |
Título da Pergunta: | Re: Integral |
i think i found it ![]() first you have to do it by parts \(Pu'v=uv-Pv'u \ \ u'=x \ \ v=ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})\) then after derivating the ln and integrating the x you shall make a substitution like \(\sqrt{x}=t\) then you'll have a rational function easy to integrate let me know any results... |
Autor: | João P. Ferreira [ 25 nov 2011, 19:30 ] |
Título da Pergunta: | Re: Integral |
We want to solve \(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})\) We shall use primitivation by parts \(Pu'v=uv-Pv'u \\ \\ u'=x \ \ v=ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})\) \(u=\frac{x^2}{2}\) \(v'=\frac{(\frac{4-\sqrt{x}}{4+\sqrt{x}})'}{\frac{4-\sqrt{x}}{4+\sqrt{x}}}=\frac{4}{\sqrt{x}(x-16)}\) Then \(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}) = \frac{x^2}{2}.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})-P\frac{4}{\sqrt{x}(x-16)}.\frac{x^2}{2}\) Now we just need to solve the primitive on the right side of the equation: \(P\frac{2.x^2}{\sqrt{x}(x-16)}\) To solve that, now we'll make a substitution \(\sqrt{x}=t \ <=> \ x=t^2 \ <=> \ x'=2t\) Then we have to solve now \(P\frac{2.t^4}{t(t^2-16)}.2t = 4P\frac{t^4}{t^2-16}\) \(\frac{t^4}{t^2-16}\) it is a rational function that we'll need to divide and decomposite it's possible to prove that \(\frac{t^4}{t^2-16}=t^2+16+\frac{256}{t^2-16}\) Now let's calculate \(P\frac{t^4}{t^2-16}=P(t^2+16+\frac{256}{t^2-16})=\frac{t^3}{3}+16t+32.ln(\frac{4-t}{4+t})+C\) Now we just need to combine everything together remembering that \(x=t^2\) \(P x.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}) = \frac{x^2}{2}.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}})-4(\frac{x^{3/2}}{3}+16\sqrt{x}+32.ln(\frac{4-\sqrt{x}}{4+\sqrt{x}}))+C\) I suppose almost 100% sure that everything it is correct Now you just need to aply the fundamental calculus theorem to solve the integral You can confirm the result here http://www.wolframalpha.com/input/?i=integrate+x*ln%28%284-sqrt%28x%29%29%2F%284%2Bsqrt%28x%29%29%29 Take care |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |