Switch to full style
Tudo sobre matéria relacionada com probabilidade que se leciona na universidade ou em cursos de nível superior
Responder

Problema de distribuição Binomial  [resolvida]

01 fev 2014, 16:14

Boa tarde,

Gostaria de uma ajuda na resolução do seguinte problema:

" Uma fábrica efectuou um contrato com uma empresa para fornecimento de 100 equipamentos sendo que 2% dos equipamentos são defeituosos.
Se a empresa tem em stock 110 equipamentos, qual a probabilidade de a fábrica cumprir o contrato estabelecido com a empresa?"

Re: Problema de distribuição Binomial

01 fev 2014, 23:50

vc tem o gabarito dessa questao?

Re: Problema de distribuição Binomial

02 fev 2014, 00:31

Não.

Re: Problema de distribuição Binomial

02 fev 2014, 00:55

nao tenho certeza se esta certo.

A probabilidade de encontrar defeito é 2%, sendo X a variavel que indica a quantidade de defeitos esperados:

\(P(x)=\binom{n}{x}p^x.(1-p)^(n-x))\)

\(P(x=2)=\binom{110}{2}0,02^2.(0,98)^(108) = 27,05%\)

Re: Problema de distribuição Binomial

02 fev 2014, 01:00

Porquê P (X=2) e não P(X=100)?

Re: Problema de distribuição Binomial

02 fev 2014, 01:07

pq eu chamei de x a variavel que indica a quantidade de defeitos. assim tera a probabilidade de haver 2 com defeito e o resto nao ter defeito, lembrando q nao tenho certeza.

Re: Problema de distribuição Binomial

02 fev 2014, 01:12

Obrigado,mas eu queria ter certezas. Alguém mais pode ajudar?

Re: Problema de distribuição Binomial

02 fev 2014, 01:50

Mas esta correcta para estar resolvida?

Re: Problema de distribuição Binomial

02 fev 2014, 12:14

Alguém pode confirmar, por favor?

Re: Problema de distribuição Binomial

11 fev 2014, 01:30

Olá

Permitam-me que esclareça melhor a variável

X = v.a. que mede o número de equipamentos defeituosos no lote de n=110 equipamentos onde a probabilidade de se encontrar um equipamento defeituoso é p=0.02

Então qual é a probabilidade de a fábrica cumprir o contrato estabelecido com a empresa? Se a empresa deve suprir a cliente com 100 equipamentos então deverá ter pelo menos 100 não defeituosos em stock para o cumprimento do contrato que é a entrega de 100 equipamentos. Pelo que a probabilidade a calcular é P(X>=100).

Mas se X~Binomial(110;0.02) então \(P(X\geq 100)=\sum_{i=100}^{110}\binom{110}{i}0.02^{110-i}0.98^{i}\)

Bom estudo ;)
Responder