olá
dado o limite: \(\LARGE \\\\\\ \lim_{x\rightarrow a}\frac{\sqrt[n]x-\sqrt[n]a}{\sqrt[m]x-\sqrt[m]a}\)
divida o numerador e denominador por: \(\\\\\\ x-a\) e separe em dois limites usando a propriedade do limite, ficando com:
\(\LARGE \\\\\\ \frac{\lim_{x\rightarrow a}\frac{\sqrt[n]x-\sqrt[n]a}{x-a}}{\lim_{x\rightarrow a}\frac{\sqrt[m]x-\sqrt[m]a}{x-a}}\)
lembre-se agora da propriedade : \(\\\\\\ a^{n}-b^{n}=(a-b)*(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1})\) :
no limite do numerador:
\(\LARGE \\\\\\ \lim_{x\rightarrow a}\frac{(\sqrt[n]x-\sqrt[n]a)}{(\sqrt[n]x-\sqrt[n]a)*(\sqrt[n]x^{n-1}+\sqrt[n]x^{n-2}*\sqrt[n]a+...+\sqrt[n]x*\sqrt[n]a^{n-2}+\sqrt[n]a^{n-1})}\)
\(\LARGE \\\\\\ \lim_{x\rightarrow a}\frac{1}{\sqrt[n]x^{n-1}+\sqrt[n]x^{n-2}*\sqrt[n]a+...+\sqrt[n]x*\sqrt[n]a^{n-2}+\sqrt[n]a^{n-1}} \\\\\\ \frac{1}{\sqrt[n]a^{n-1}+\sqrt[n]a^{n-2}*\sqrt[n]a+...+\sqrt[n]a*\sqrt[n]a^{n-2}+\sqrt[n]a^{n-1}} \\\\\\ \frac{1}{n*\sqrt[n]a^{n-1}}\)
agora o limite do denominador:
\(\LARGE \\\\\\ \lim_{x\rightarrow a}\frac{(\sqrt[m]x-\sqrt[m]a)}{(\sqrt[m]x-\sqrt[m]a)*(\sqrt[m]x^{m-1}+\sqrt[m]x^{m-2}*\sqrt[m]a+...+\sqrt[m]x*\sqrt[m]a^{m-2}+\sqrt[m]a^{m-1})}\)
\(\LARGE \\\\\\ \lim_{x\rightarrow a}\frac{1}{\sqrt[m]x^{m-1}+\sqrt[m]x^{m-2}*\sqrt[m]a+...+\sqrt[m]x*\sqrt[m]a^{m-2}+\sqrt[m]a^{m-1}}\)
\(\LARGE \\\\\\ \frac{1}{\sqrt[m]a^{m-1}+\sqrt[m]a^{m-2}*\sqrt[m]a+...+\sqrt[m]a*\sqrt[m]a^{m-2}+\sqrt[m]a^{m-1}} \\\\\\ \frac{1}{m*\sqrt[m]a^{m-1}}\)
voltando agora ,para fazermos algumas simplificações:
\(\LARGE \\\\\\ \frac{\frac{1}{n*\sqrt[n]a^{n-1}}}{\frac{1}{m*\sqrt[m]a^{m-1}}}\)
\(\LARGE \\\\\\ \frac{m\sqrt[m]a^{m-1}}{n*\sqrt[n]a^{n-1}} \\\\\\ \frac{ma^{\frac{m-1}{m}}}{n*a^{\frac{n-1}{n}}} \\\\\\ \frac{m \sqrt[mn]{a}^{m-n}}{n}\)
confira com o gabrito.
att.