Coloque aqui todas as dúvidas que tiver sobre limites, regra de Cauchy ou L'Hopital, limites notáveis e afins
08 fev 2014, 15:39
Boa tarde. Tenho dúvidas em calcular este limite.
\(\lim_{x \to -\infty} \frac{ln(e^{-x}-1)}{x}\)
Resposta: -1
09 fev 2014, 19:04
\(\lim_{x \to -\infty} \frac{ln(e^{-x}-1)}{x}\)
\(u=e^{-x}-1 \;\; x=-ln(u+1) \;\; x \rightarrow -\infty \; , \; u \rightarrow +\infty\) :
\(-\lim_{u \to +\infty} \; \frac{\ln(u)}{\ln(u+1)}\)
\(-\lim_{u \to +\infty} \; \frac{\ln(u)}{\ln(u*(1+\frac{1}{u}))}\)
\(-\lim_{u \to +\infty} \; \frac{\ln(u)}{\ln(u)+\ln(1+\frac{1}{u}))}\)
\(-\left( \; \frac{\lim_{u \to +\infty} \; \ln(u)}{\lim_{u \to +\infty} \;\ln(u)+\lim_{u \to +\infty}\;\ln(1+\frac{1}{u}))} \right )\)
\(-\left( \; \frac{\lim_{u \to +\infty} \; \ln(u)}{\lim_{u \to +\infty} \;\ln(u)}\right )\)
\(-\left(\lim_{u \to +\infty} \; \frac{ \ln(u)}{\ln(u)}\right )\)
\(-(1)=\fbox{\fbox{-1}}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.