fff Escreveu:\(\lim_{x \to +\infty }\frac{ln(2e^{2x}+e^{x}-3)}{x}\)
R:2
Deixo aqui minha outra forma de resolução:
substituição \(u=e^{x} \; \rightarrow \; x=\ln(u) \; , \; x \to +\infty \;, u\to +\infty\)
\(\lim_{u \to +\infty }\frac{\ln(2u^2+u-3)}{\ln(u)}\)
\(\lim_{u \to +\infty }\frac{\ln(u^2(2+\frac{1}{u}-\frac{3}{u^{2}}))}{\ln(u)}\)
\(\lim_{u \to +\infty }\frac{\ln(u^2)+\ln(2+\frac{1}{u}-\frac{3}{u^{2}})}{\ln(u)}\)
\(\lim_{u \to +\infty }\frac{\ln(u^2)}{\ln(u)}+\lim_{u \to +\infty } \frac{\ln(2+\frac{1}{u}-\frac{3}{u^{2}})}{\ln(u)}\)
\(\lim_{u \to +\infty }2*\frac{\ln(u)}{\ln(u)}+\lim_{u \to +\infty } \frac{\ln(2+\frac{1}{u}-\frac{3}{u^{2}})}{\ln(u)}\)
\(2+ \frac{\ln(2+\frac{1}{+\infty}-\frac{3}{(+\infty)^{2}})}{+\infty}\)
\(2+ \frac{\ln(2)}{+\infty}\)
\(\fbox{\fbox{2}}\)