16 fev 2014, 12:06
16 fev 2014, 14:29
16 fev 2014, 15:24
fff Escreveu:Dividir tudo por x:
\(\lim_{x \to 0^{+}}\frac{1}{\frac{\sqrt{x}}{x}-1}=\lim_{x \to 0^{+}}\frac{1}{\sqrt{\frac{x}{x^2}}-1}=\lim_{x \to 0^{+}}\frac{1}{\sqrt{\frac{1}{x}}-1}=\frac{1}{\frac{1}{0^+}-1}=\frac{1}{+\infty }=0\)
\(\lim_{x \to 3^+}\frac{x-3}{-(x-3)^2}=\lim_{x \to 3^+}\frac{1}{-(x-3)}=\lim_{x \to 3^+}\frac{1}{-x+3}=\frac{1}{0^-}=-\infty\)
16 fev 2014, 15:50
efg Escreveu:fff Escreveu:Dividir tudo por x:
\(\lim_{x \to 0^{+}}\frac{1}{\frac{\sqrt{x}}{x}-1}=\lim_{x \to 0^{+}}\frac{1}{\sqrt{\frac{x}{x^2}}-1}=\lim_{x \to 0^{+}}\frac{1}{\sqrt{\frac{1}{x}}-1}=\frac{1}{\frac{1}{0^+}-1}=\frac{1}{+\infty }=0\)
\(\lim_{x \to 3^+}\frac{x-3}{-(x-3)^2}=\lim_{x \to 3^+}\frac{1}{-(x-3)}=\lim_{x \to 3^+}\frac{1}{-x+3}=\frac{1}{0^-}=-\infty\)
Porquê na 33.4 pôs \(0^-\)?