Coloque aqui todas as dúvidas que tiver sobre limites, regra de Cauchy ou L'Hopital, limites notáveis e afins
17 fev 2014, 19:29
Como é que resolvo estes limites?
1)\(\lim_{x-0}\frac{ln(2x+1))}{e^x-1}\)
2)\(\lim_{ x \to 1} \; \frac{x^2-x}{2x*\ln x}\)
Editado pela última vez por
nsm em 17 fev 2014, 19:57, num total de 1 vez.
17 fev 2014, 19:45
2 )
\(\lim_{ x \to 1} \; \frac{x^2-x}{2x*\ln x}\)
\(\lim_{ x \to 1} \; \frac{x-1}{2\ln x}\)
\(u=x-1 \;\; x=u+1 \;\;\;\;\; x \to 1 \;\; u \to 0\)
\(\lim_{ u \to 0} \; \frac{u}{2\ln (u+1)}\)
\(\frac{1}{2}*\lim_{ u \to 0} \; \frac{u}{\ln (u+1)}\)
\(\frac{1}{2}*\lim_{ u \to 0} \; \frac{1}{\frac{\ln (u+1)}{u}}\)
\(\frac{1}{2}*\lim_{ u \to 0} \; \frac{1}{\ln (u+1)^{\frac{1}{u}}\)
\(\frac{1}{2}*\left( \; \frac{\lim_{ u \to 0} \; 1}{\lim_{ u \to 0} \; \ln (u+1)^{\frac{1}{u}} \right)\)
\(\frac{1}{2}*\left( \; \frac{\lim_{ u \to 0} \; 1}{\ln \left( \lim_{ u \to 0} \; (u+1)^{\frac{1}{u} \right) \right)\)
\(\fbox{\fbox{\fbox{\frac{1}{2}}}}\)
PS: Verifique o primeiro limite.Por favor.
17 fev 2014, 21:25
1) comece dividindo por x:
\(\lim_{ x \to 0 } \; \frac{\frac{\ln(2x+1)}{x}}{\frac{e^{x}-1}{x}}\)
\(\lim_{ x \to 0 } \; \frac{\ln(2x+1)}{x}\)
\(u=\ln(2x+1) \;\; \frac{e^{u}-1}{2}=x \;\;\;\;\; x \to 0 \;\; u \to 0\)
\(\lim_{ u \to 0} \; \frac{u}{ \frac{e^{u}-1}{2}}\)
\(\lim_{ u \to 0} \; \frac{1}{ \frac{e^{u}-1}{2u}}\)
\(\frac{\lim_{ u \to 0} \; 1}{ \lim_{ u \to 0} \; \frac{e^{u}-1}{2u}}\)
\(\frac{\lim_{ u \to 0} \; 1}{ \frac{1}{2}*\lim_{ u \to 0} \; \frac{e^{u}-1}{u}}\)
\(\frac{ \; 1}{ \frac{1}{2}}=\fbox{\fbox{2}}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.