Coloque aqui todas as dúvidas que tiver sobre limites, regra de Cauchy ou L'Hopital, limites notáveis e afins
22 Oct 2014, 12:39
Calcule os limites quando t → -∞ e quando t → ∞ da função f(t) = \(\frac{5t + 4 \sqrt{t^{2}-2t-15}}{6t+5}\)
22 Oct 2014, 17:02
\(lim_{t\rightarrow \infty}\frac{5t+4\sqrt{t^2-2t-15}}{6t+5}=lim_{t\rightarrow \infty}\frac{5t+4\sqrt{t^2(1-\frac{2}{t}-\frac{15}{t^2})}}{6t}=lim_{t\rightarrow \infty}\frac{5t+4\sqrt{t^2}}{6t}=lim_{t\rightarrow \infty}\frac{5t+4|t|}{6t}=lim_{t\rightarrow \infty}\frac{5t+4t}{6t}=\frac{3}{2}\)
\(lim_{t\rightarrow -\infty}\frac{5t+4\sqrt{t^2-2t-15}}{6t+5}=lim_{t\rightarrow -\infty}\frac{5t+4\sqrt{t^2(1-\frac{2}{t}-\frac{15}{t^2})}}{6t}=lim_{t\rightarrow -\infty}\frac{5t+4\sqrt{t^2}}{6t}=lim_{t\rightarrow -\infty}\frac{5t+4|t|}{6t}=lim_{t\rightarrow -\infty}\frac{5t-4t}{6t}=\frac{1}{6}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.