Coloque aqui todas as dúvidas que tiver sobre limites, regra de Cauchy ou L'Hopital, limites notáveis e afins
24 abr 2015, 11:50
Boas.
Tentei fazer este limite(14) , mas deu-me +infinito.
Alguém sabe resolver?
- Anexos
-

25 abr 2015, 13:06
\((1)\; \lim_{x\rightarrow 0}\left ( \frac{2}{x\, ^{2}}\: \tan ^{2}\left ( \frac{x}{3} \right ) \right )\; ^{\infty \times 0}\)
\((2)\; \lim_{x\rightarrow 0}\left ( \frac{2}{x\, ^{2}}\; \frac{\sin ^{2}\left ( \frac{x}{3} \right )}{\cos ^{2}\left ( \frac{x}{3} \right )} \right )\)
\((3)\; \lim_{x\rightarrow 0}\left ( \frac{2}{\cos ^{2}\left ( \frac{x}{3} \right )}\; \frac{\sin ^{2}\left ( \frac{x}{3} \right )}{x^{2}} \right )\)
\((4)\; \lim_{x\rightarrow 0}\left ( \frac{2}{\cos ^{2}\left ( \frac{x}{3} \right )}\; \frac{\sin \left ( \frac{x}{3} \right )}{x}\; \frac{\sin \left ( \frac{x}{3} \right )}{x}\right )\)
\((5)\; \lim_{x\rightarrow 0}\left ( \frac{2}{\cos ^{2}\left ( \frac{x}{3} \right )}\; \frac{\sin \left ( \frac{x}{3} \right )}{\frac{x}{3}}\times \frac{1}{3}\; \frac{\sin \left ( \frac{x}{3} \right )}{\frac{x}{3}}\times \frac{1}{3} \right )\)
\((6)\; \frac{2}{\cos 0}\times \frac{1}{9}\times 1\times 1=\frac{2}{9}\)
Opção B
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.