Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

limite trigonométrico sem usar a regra de l'hopital
https://forumdematematica.org/viewtopic.php?f=7&t=10870
Página 1 de 1

Autor:  prof.soniaportela [ 11 abr 2016, 23:06 ]
Título da Pergunta:  limite trigonométrico sem usar a regra de l'hopital

como calcular lim[(sen(2x)-2x)/(x^3)] , quando x tende para zero, sem usar a regra de l'hpital.

Autor:  Sobolev [ 12 abr 2016, 15:17 ]
Título da Pergunta:  Re: limite trigonométrico sem usar a regra de l'hopital

E pode utilizar a fórmula de Taylor? Bem sei que acaba por ser equivalente à regra de Cauchy... Se puder, basta ter em conta que

\(\sin 2x = 0 + (2x) - \frac{(2x)^3}{3!} + \frac{32 \cos (\2 \xi(x))}{5!} (2x)^5, \quad \xi \in [0, x]\)

pelo que

\(\lim_{x \to 0} \frac{\sin 2x - 2x}{x^3} = \lim_{x\to 0} \frac{( (2x) - \frac{(2x)^3}{3!} + \frac{32 \cos (\2 \xi(x))}{5!} (2x)^5)-2x}{x^3}= \lim_{x\to 0}\left( -\frac{(2x)^3}{x^3}+ \frac{32 \cos (2 \xi(x)) (2x)^5}{5! x^3}\right) -\frac 43\)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/