Fórum de Matemática | DÚVIDAS? Nós respondemos! https://forumdematematica.org/ |
|
limit https://forumdematematica.org/viewtopic.php?f=7&t=179 |
Página 1 de 1 |
Autor: | kinu [ 02 fev 2012, 17:33 ] |
Título da Pergunta: | limit |
\(\displaystyle \lim_{n\rightarrow \infty}\left\{\left(\sqrt{2}+1\right)^n\right\}.(-1)^{\left[\left(\sqrt{2}+1\right)^n\right]}\) Where \(\left\{x\right\}=\) fractional part function and \(\left[x\right]=\) Integer part function and \(n\in \mathbb{N}\) |
Autor: | Rui Carpentier [ 06 fev 2012, 14:56 ] |
Título da Pergunta: | Re: limit |
Hint: Show first that \((1+\sqrt{2})^n+(1-\sqrt{2})^n\) is an even number. Then conclude that \([(\sqrt{2}+1)^n]\) is odd if \(n\) is even and even if \(n\) is odd (note that \(-1<1-\sqrt{2}<0\)). After that the exercise is easy. |
Autor: | kinu [ 06 fev 2012, 17:59 ] |
Título da Pergunta: | Re: limit |
Thanks Sir. my process:: I have used two cases (i) When \(n=2m\) and \(m\in \mathbb{N}\) means \(n\) is even (ii) When \(n=2m+1\) and \(m\in \mathbb{N}\) means \(n\) is odd Now for (i) \(\lim_{m\rightarrow \infty} \left\{\left(\sqrt{2}+1\right)^{2m}\right\}\times (-1)^{\left[(\sqrt{2}+1)^{2m} \right]}\) Now \(\left(\sqrt{2}+1\right)^{2m} =\left [\left (\sqrt{2}+1\right)^{2m} \right\]+\left\{\left(\sqrt{2}+1\right)^{2m}\right\}\) Now Let \(\left\{\left(\sqrt{2}+1\right)^{2m}\right\} = f\Leftrightarrow 0 \leq f<1\) Now Let \(\left\{\left(\sqrt{2}-1\right)^{2m}\right\} = f^{'}\Leftrightarrow 0<f<1\) So \(\left\{\left(\sqrt{2}+1\right)^{2m}\right\} = \left(\sqrt{2}-1\right)^{2m}\) So \(\left(\sqrt{2}+1\right)^{2m}+\left(\sqrt{2}-1\right)^{2m} = 2N\;\;, n\in \mathbb{N}\) So \(\left [\left(\sqrt{2}+1\right)^{2m} \right]+f+f^{'} = 2N\) So \(f+f^{'}\in \mathbb{N}\Leftrightarrow f+f^{'} = 1\) So \(\lim_{m\rightarrow \infty} \left(\sqrt{2}+1\right)^{2m}+\lim_{m\rightarrow \infty} \left(\sqrt{2}+1\right)^{2m} = 1\) So \(\lim_{m\rightarrow \infty} \left(\sqrt{2}+1\right)^{2m}+0\) = 1 and \(\left [\left(\sqrt{2}+1\right)^{2m} \right] = 2N-1\) So \(\displaystyle \lim_{n\rightarrow \infty}\left\{\left(\sqrt{2}+1\right)^n\right\}.(-1)^{\left[\left(\sqrt{2}+1\right)^n\right]} = 1\times (-1)^{2N-1} = -1\) But How can I calculate for (ii) case Help Required.. |
Autor: | Rui Carpentier [ 09 fev 2012, 19:47 ] |
Título da Pergunta: | Re: limit |
All you have to do is to show that: \((-1)^{[(\sqrt{2}+1)^n]}=\left\{\begin{array}{cc}+1 & \mbox{if } n \mbox{ is odd}\\ -1 & \mbox{if } n \mbox{ is even}\end{array} \right.\) and \(\{(\sqrt{2}+1)^n\}=\left\{\begin{array}{cc}(\sqrt{2}-1)^n & \mbox{if } n \mbox{ is odd}\\ 1-(\sqrt{2}-1)^n & \mbox{if } n \mbox{ is even}\end{array} \right.\) Both came from the fact that \((\sqrt{2}+1)^n=\left\{\begin{array}{cc}2k+(\sqrt{2}-1)^n & \mbox{if } n \mbox{ is odd}\\ 2k-(\sqrt{2}-1)^n & \mbox{if } n \mbox{ is even}\end{array} \right.\) which came from the fact that \((1+\sqrt{2})^n+(1-\sqrt{2})^n=2k\) (an even number) and \(0<(\sqrt{2}-1)^n<1\). With this you shall complete the exercise. |
Página 1 de 1 | Os Horários são TMG [ DST ] |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |