Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 04 jul 2025, 04:00

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
 Título da Pergunta: limites de funções
MensagemEnviado: 20 fev 2014, 19:20 
Offline

Registado: 11 jan 2014, 20:33
Mensagens: 91
Localização: Porto
Agradeceu: 3 vezes
Foi agradecido: 1 vez(es)
\(\lim_{x \to +\infty}\; \frac{e^{2x}-x}{e^{x}}\)


Editado pela última vez por Man Utd em 20 fev 2014, 19:37, num total de 2 vezes.
Arrumar Latex


Topo
 Perfil  
 
 Título da Pergunta: Re: limites de funções
MensagemEnviado: 20 fev 2014, 22:19 
Offline

Registado: 07 jan 2013, 13:27
Mensagens: 339
Localização: Porto Alegre-Brasil
Agradeceu: 57 vezes
Foi agradecido: 128 vezes
\(\lim_{x\rightarrow \infty} \frac{e^{2x}-x}{e^x}=\lim_{x\rightarrow \infty}(e^x-\frac{x}{e^x})\). Pode-se provar que \(\lim_{x\rightarrow \infty}\frac{x}{e^x}=0\). Logo, \(\lim_{x\rightarrow \infty}(e^x-\frac{x}{e^x})=\lim_{x\rightarrow \infty}e^x=\infty\)


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 4 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: