Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 04 jul 2025, 13:58

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
MensagemEnviado: 21 ago 2014, 02:46 
Offline

Registado: 08 jul 2014, 00:48
Mensagens: 62
Localização: Minas
Agradeceu: 30 vezes
Foi agradecido: 0 vez(es)
Dê o limite:
\(\lim_{x->1}\frac{sen(\pi*x)}{1-x^{2}\)

Resp: pi/2

Muito obrigado !!


Topo
 Perfil  
 
MensagemEnviado: 21 ago 2014, 08:53 
Offline

Registado: 21 jan 2011, 11:31
Mensagens: 947
Localização: Portugal
Agradeceu: 11 vezes
Foi agradecido: 126 vezes
É o caso clássico da indefinição 0/0

Aplique-se a regra de L'Hôpital.

\(\lim_{x \to 1} \frac{sen(\pi.x)}{1-x^2}=\)
\(\lim_{x \to 1} \frac{(sen(\pi.x))'}{(1-x^2)'}=\)
\(\lim_{x \to 1} \frac{(\pi.cos(\pi.x))'}{(-2x)'}=\frac{\pi}{2}\)

_________________
José Sousa
se gostou da resposta, divulgue o fórumdematemática.org

O Binômio de Newton é tão belo como a Vênus de Milo.
O que há é pouca gente para dar por isso.

óóóó---óóóóóó óóó---óóóóóóó óóóóóóóó
(O vento lá fora.)

Álvaro de Campos, 15-1-1928


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 14 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para:  
cron