Switch to full style
Responder

Racionalização de denominadores com expressão somando duas raízes cúbicas

17 dez 2015, 12:09

\(\frac{1}{\sqrt[3]{5}+\sqrt[3]{2}}\)
Anexos
CodeCogsEqn.gif
CodeCogsEqn.gif (469 Bytes) Visualizado 1247 vezes

Re: Racionalização de denominadores com expressão somando duas raízes cúbicas

17 dez 2015, 14:19

se,
\(a^3 + b^3 = (a +b).(a^2 - a.b + b^2)\)

então:

\(\frac{1}{\sqrt[3]{5}+\sqrt[3]{2}} = \frac{1.[(\sqrt[3]{5})^2 - (\sqrt[3]{5}.\sqrt[3]{2}) + (\sqrt[3]{5})^2]}{(\sqrt[3]{5}+\sqrt[3]{2}).[(\sqrt[3]{5})^2 - (\sqrt[3]{5}.\sqrt[3]{2}) + (\sqrt[3]{5})^2]\)

alguém pode continuar?

Re: Racionalização de denominadores com expressão somando duas raízes cúbicas

17 dez 2015, 21:30

\(\frac{\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}}{\sqrt[3]{5^{3}}+\sqrt[3]{2^{3}}}=\frac{\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}}{7}\)
Responder