09 Oct 2016, 06:47
Sejam \(\alpha\), \(\beta\) e \(\gamma\) três números reais. Sabe-se que \(\alpha\) + \(\beta\) = \(\pi\) e
\(\beta\) + \(\gamma\) = \(\frac{3\pi }{2}\). Qual das expressões seguintes é equivalente a cos\(\alpha\) + cos\(\beta\) + sen\(\gamma\)? Porquê?
(A) 3 cos\(\alpha\)
(B) 2 cos\(\alpha\) + sen\(\alpha\)
(C) -cos\(\alpha\)
(D) cos\(\alpha\)
Podem ajudar-me . Obrigado
09 Oct 2016, 09:01
\(\cos \beta = \cos (\pi -\alpha) = -\cos \beta\)
\(\sin \gamma = \sin (\frac{3 \pi}{2} - \beta) = -\cos \beta = \cos \alpha\)
Assim,
\(\cos \alpha + \cos \beta + \sin \gamma = \cos \alpha -\cos \alpha + \cos \alpha = \cos \alpha\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.